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Abstract 

A new dense matching algorithm is proposed in this 
paper. It is based on propagation from N seed points, 
which have been matched reliably by feature tracking. 
The whole image is first divided into N cells by the 
Voronoi diagram of the seed feature points. Then 
corresponding relations are propagated from the seed in 
each cell until all pixels within this cell are processed. 
Modified sum of squared differences (SSD) is employed as 
the cost function in the propagation of matching 
according to a statistic model of disparity distribution 
within the window. The size of the window is adaptive. It 
is made inversely proportional to the texture density 
inside the window to increase the reliability of matching. 
A significant merit of the algorithm is that it can be 
applied to a wide range of image pairs including those 
with large disparities, with or without rectification. The 
algorithm has been verified with real images and the 
results show that it is both robust and accurate. 

1. Introduction 

Traditional dense matching falls into two categories of 
approaches: an approach based on a local method; another 
based on a global optimization. The former compares 
intensity similarity of pixels within a window between a 
pair of images to decide whether the centre points of the 
windows are a pair of corresponding points. In this 
approach, the selection of an appropriate window size is 
critical to achieve a smooth and detailed disparity map. 
The optimal choice of a window size depends on the local 
amount of variation in texture and disparity. As for the 
global optimization, sometimes better results can be 
achieved. Its objective is to find a solution that minimizes 
a disparity function, which includes a data term and a 
smoothness term. The data term measures how well the 
disparity function agrees with the input image pair while 
the smoothness term encodes the smoothness assumptions 
made by the algorithm. An important problem for global 
algorithms, however, is to find the right balance between 
data and smoothness terms [10]. 

Among the first category is the adaptive window method 
proposed by Kanade [3]. The window size and shape are 
iteratively changed according to the local textures and 
current depth estimates. Though it improved the matching 
result significantly, it is extremely computationally 
expensive. In the second category, attempts at using 
dynamic programming for solving stereo matching 
problem [7] using edges as the basic primitives have been 
reported. A generalization of the dynamic programming 
algorithm transforms the stereo correspondence problem 
into a maximum-flow problem [9]. Once solved, the 
minimum-cut associated to the maximum-flow yields a 
disparity surface for the whole image at once. This 
algorithm provides a more accurate and coherent disparity 
map than the traditional line-by-line stereo. By 
introducing global constraints and adopting a cooperative 
iterative algorithm, a fairly good dense disparity map is 
obtained in [15]. Its computational complexity is less than 
that of the adaptive window method. But both the amount 
of memory needed and the complexity of computation are 
still high. This is especially so when the disparities are 
large. Later, this algorithm is extended in choosing local 
support areas by enforcing the image segmentation 
information [14]. 
Dense matching algorithm using region growing [4] has 
shown good performances. However, the methods 
developed so far can only be applied to images rich in 
textures. Propagation is no good in regions that are too 
smooth. Recently a quasi-dense matching algorithm is 
proposed [5] which propagates the matches from the most 
textured pixels to less textured ones. In [11], the stereo 
matching problem is formulated as a Markov network 
consisting of three coupled Markov random fields. A new 
matching cost based on the reconstructed image signals is 
derived in [12]. Okutomi et al. [8] proposed to detect the 
region where the object boundary is likely to occur and 
adopts appropriate methods for these regions. Hierarchical 
stereo algorithm has also been researched [6]. The images 
are down-sampled an optimal number of times and the 
disparity map for a lower level is used as ‘offset‘  to guide 
the computation of disparity map at a higher level. Its 
complexity is independent of the disparity range. A 
genetic algorithm [2] optimizes both the compatibility 
between corresponding points and the continuity of the 



disparity map, which removes mismatches caused by false 
targets. 
In this paper, a new dense matching algorithm is 
proposed. The Voronoi diagram of a number of feature 
points, which have been matched reliably, divides the 
whole image into many cells. Each cell contains a feature 
point, which is taken as the seed for propagation inside 
this region. Correspondences of the 8 neighbouring points 
of each seed are found using the disparity of this centred 
point under the continuity constraint. In this way, 
corresponding relations propagate from the seeds towards 
boundaries of the Voronoi diagram. A new cost function 
is employed in the measurement of intensity similarity 
with an adaptive window. The size of the window is 
changed dynamically according to the texture density 
within it. Full search is performed at possible regions of 
sharp depth discontinuities where continuity constraint 
might be violated. These techniques improve the 
performance of existing matching algorithms based on 
propagation. The details are described in Section 2. Some 
special issues in implementation are discussed in Section 
3 and the algorithm is summarized in Section 4. Section 5 
provides experimental results with real image pairs, which 
demonstrate the accuracy of the algorithm. Finally, some 
concluding comments are given in Section 6. 

2. Dense matching based on 
propagation with Voronoi Diagram 

There are mainly three stages in our algorithm. At the 
start, a number of seed feature points are extracted and 
matched by feature tracking. Then the Voronoi diagram of 
these seeds is computed to divide the image into many 
cells so that each seed is contained in a cell. Finally, 
matching relations are propagated from the 
correspondences of the seed feature points towards 
boundaries of these cells until all of the matched regions 
are merged together. 
Propagation makes use of the continuity constraint. 
Surfaces of objects are assumed to be smooth under this 
constraint, which means its disparity varies continuously. 
Propagation is a simple and effective way of using this 
constraint to solve the problem of dense matching. Its 
basic idea is as follows. If a point A in the left image is 
corresponding to a point A

�
 in the right image, the 

matching point B
�
 of a point B in the neighbourhood of 

point A must be in the neighbourhood of the point A
�
. 

Thus the search area of B
�
 is restricted in the 

neighbourhood of A
�
. Once a pair of matching points has 

been found with accuracy, the search areas of 8 points 
surrounding it are reduced to small regions if there are no 
large depth discontinuities. If the disparity level of the 
new correspondence is within a reasonable range, they are 
added to the set of the seeds to produce more matches. 

The basic propagation strategy from a seed to its two 
neighbouring points is shown in Figure 1. In this figure, s 
and S is a pair of seed points while r and b are the two 
neighbouring points of point s respectively in the left 
image. The expected positions of their correspondences R 
and B in the right image are localized according to their 
relative positions with point s as is shown in Figure 1(b), 
in which the search windows for point R and B are shown 
by two rectangles with bold lines. Here the size of the 
search window is 4×4 pixels. It can also be seen from 
Figure 1 that the order constraint is incorporated 
implicitly in the process of propagation. 
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                        (a)                            (b) 
Figure 1: Propagation strategy from a seed point to two 
points in the neighbourhood of it. (a) Left image. (b) 
Right image. 
 
There are two popular measurements of the intensity 
similarity of two locations: correlation coefficient and 
SSD. Both matching costs are defined over a certain area 
of support. The standard SSD in intensity between N1(i0, 
j0) and N2(i0, j0) is: 
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where Nk(i0,j0), k=1,2, is a neighbourhood of the pixel 
(i0,j0) for image Ik, k=1,2. I1(i,j) and I2(i,j) represent 
intensity values of the image pair at point (i,j) 
respectively. Computation of correspondences at each 
pixel is to find the position associated with the minimum 
SSD in intensity within the area of a search window: 
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where 
�

 represents the area of the search window. 
In fact, the method of measuring intensity similarity of 
corresponding pixels in two windows to find matching 
points is valid only when all the pixels in the window 
have the same depth and foreshortening. The 
foreshortening problem can be tackled by rectification. If 
their depths are different, the disparity in the centre of the 
window must be different from other points. Using these 
points to support the matching of the centre point will 
cause some errors, which will blur edges in the resulting 
depth maps. However, disparities of the image pair can be 
assumed to change approximately continuously under the 
continuity constraint. A statistical model of disparity 
distribution within the window as described by Kanade et 
al. [3] can be adopted to decrease this systematic error. A 
typical model is as follows: 
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where �  is a constant that represents the amount of 
fluctuation of the disparity: 
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where N is the number of the samples within the window. 
d(r,s) is the disparity which represents the matches as 
offsets to the points in the left image. This model assumes 
that the difference in disparity at a point (r, s) in the 
window from that of the centre point (0,0) has a 2D zero-
mean Gaussian distribution with variance proportional to 
the distance between these points. In other words, the 
expected value of the disparity at (r, s) is the same as the 
centre point, but it is expect to fluctuate more as the point 
is farther from the centre. Alternatively, the small surface 
corresponding to the window in the image is expected to 
be locally flat and parallel to the baseline statistically. 
However, the expectation becomes less certain as the 
window becomes larger. Thus we modified the above 
SSD according to this model: 
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where w(i,j) is the added weight which has a 2D zero-
mean Gaussian distribution: 
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The accuracy of the matching is improved significantly by 
adopting the above cost function since it fits the reality 
better. At the same time, the computational complexity 
introduced by the added weight is not so significant. 
The local support area for an element determines which 
and to what extent neighbouring elements should 
contribute to averaging. Ideally, the local support area 
should include only those neighbouring elements that 
correspond to a correct match if the current element 
corresponds to a correct match. Since the correct match is 
not known beforehand, some assumption is required on 
deciding the extension of the local support. After edge 
extraction, we can assume that points in a window from 
which no edges can be extracted are on the same plane. 
As there are little textures within the window, a small 
window size may cause mismatch. So a larger one is 
adopted to improve the accuracy of the matching. In our 
algorithm, the size of the window is increased until the 
textures within it are above a fixed threshold or it has 
reached a maximum value. This will not lose many details 
and will not blur object boundaries in the resulting 
disparity map. At the same time, errors introduced by the 
large window will also decrease by adopting the modified 

SSD as the cost function. It turns out to be able to deal 
with propagation in less textured areas in experiments. 

3. Several Issues in Implementation 

The Voronoi diagram of a collection of seed feature 
points is a partition of an image space into cells, each of 
which consists of those image points which are closer to 
one particular feature point than to any others. The 
boundaries of these diagrams are the so-called medial 
axes and their duals are Delaunay triangulation. The 
Voronoi diagrams are involved in situations where a space 
should be partitioned into "spheres of influence". So it is a 
good choice in our propagation algorithm. An example of 
the Voronoi diagram of a real image is shown in Figure 2. 
 

  
 
Figure 2: Example of the Voronoi diagram of a image 
 
In our algorithm, corresponding relations grow from each 
seed until the boundaries of the diagram are reached. 
Since in the process of 3D reconstruction, feature 
matching is the first step for estimation of epipolar 
geometry, a number of (100 – 150) matched feature points 
are available at this stage. So this requirement is 
reasonable and will not bring additional computation. It is 
obvious that it is better if we can have more 
corresponding feature points. After the first stage of 
feature tracking, more corresponding points can be added 
manually to make all of them distribute evenly in the 
image plane so that they cover the entire depth range in 
the appropriate parts of the image. It is true that our 
division of the image does not coincide with the edges of 
different depth. This can only be achieved by depth 
segmentation, as is mentioned in [14]. Perfect results can 
be obtained by propagation within the area of the same 
depth. But this method depends heavily on a good 
segmentation algorithm, which is now still being 
researched. So in this sense, our algorithm is more 
feasible than [14]. 
The key point of propagation is the assumption of depth 
continuities. The surface should be smooth since pixels 
are assigned disparities close to the disparities of already 



matched pixels. However, continuity constraint is violated 
at sharp depth discontinuities. Search windows with just 
4×4 or 5×5 pixels may not be enough to achieve correct 
matches in these areas. So we must detect these areas and 
enlarge the search ranges in these regions. One possible 
way of finding areas of depth discontinuities is as follows. 
Firstly, we apply operators of edge detection to find the 
edges in the images, which are then dilated by a 3×3 
square mask. That is, if any of the 9 data elements centred 
on the element of interest are unequal to zero, then a 1 is 
returned for the element of interest, and a 0 otherwise. In 
this way, the possible areas of depth discontinuities are 
detected to show when a full search should be performed. 
This will avoid the risk of bad propagation. Here a full 
search just refers to the maximum disparity range. This 
process is demonstrated in Figure 3. Figure 3(a) is the 
result of edge extraction and Figure 3(b) dilation. 
Although we cannot distinguish the true depth 
discontinuities from textures or shades, it is an effective 
and simple method to find possible areas of depth 
discontinuities. 
 

    
                  (a)                                             (b) 
Figure 3:  (a) Edge extraction. (b) Dilation of edges 
marks possible areas of depth discontinuities. 
 
Since windows create problems at depth discontinuities, a 
simplified version of adaptive windows similar to that of 
Bobick et al. [1] can be adopted. At every pixel location 
different windows are used to perform the matching. 
Windows are located so that at an occlusion boundary, 
some of these windows will match across the boundary 
and some will not. At each pixel, only the best matching 
result will be stored. The effect of trying all shifted 
windows around a pixel is the same as taking the 
minimum matching score across all centred windows in 
the same neighbourhood. In this way, bad matches 
resulting from occlusion tend to be discarded. 
When our algorithm is tested on image pairs without 
rectification, depth maps cannot be used to display the 
results. So a global way to visualize dense matches for 
arbitrary images is used [4]. Pixels of the first image are 
colored with a black-white checkerboard. For each 
matched pixel of this image, the corresponding pixels of 
the second image are set with the same color. This makes 
it easy to visualize the match of each square and its 
distortion. An even better way for displays is to blend a 
checkerboard with the original images. 

When we deal with images without rectification, we only 
need to add the epipolar constraint to restrict the search 
area further or take it as a term in the cost function to 
compute the match values. After feature tracking, the 
fundamental matrix is available. So it is very flexible to 
do rectification or not when our algorithm is applied. 

4. Summary of the algorithm 

The algorithm is summarized as follows. 
1. Feature tracking. Obtain reliable correspondences of N seed 
feature points. 
2. Estimate the epipolar geometry if the image pair is not 
rectified. 
3. Find the Voronoi diagram of these seed feature points. There 
is one Voronoi cell for each seed. 
4. Take out a seed to generate the correspondences of its 8 
neighbours. For each neighbour, the matching point is searched 
at the neighbourhood of the corresponding point of the seed. 
Modified SSD is used in the adaptive search window with 
epipolar constraint. 
5. Correspondences generated from the already matched points 
are used to produce more matching points. 
6. Correspondences propagate from the seed feature point in the 
middle of each cell until the boundaries of the Voronoi diagram 
are reached. 

5. Experimental Results 

Experiments are performed to evaluate the new dense 
matching algorithm. First, it has been applied to real 
images. The initial image pair of a church is shown in 
Figure 4. This is a difficult example due to the existence 
of repetitive patterns and areas with little texture. In spite 
of these, most of the points have been matched correctly. 
This is due to the new algorithm we developed. It is the 
propagation that avoids errors between repetitive patterns 
with a large variation in position. In order to illustrate the 
performance of the algorithm, no further processing for 
eliminating outliers has been carried out. In fact, a large 
part of the outliers could be eliminated by any commonly 
used techniques, such as RANSAC. The result of the 
visual matching checkerboard blend with the original 
image is shown in Figure 5. We can see that most of the 
errors occur in the middle part of the image where there is 
a glass window. This is because the basic assumption of 
Lambertian surfaces is violated in these regions. That 
means the appearance or intensity of the same point varies 
with viewpoint, as can be seen clearly from Figure 4. This 
accounts for the main errors in Figure 5. Another error in 
the right-bottom corner is caused by a lamp. As stated 
above, order constraint is enforced implicitly in the 
process of propagation. This constraint requires that the 
relative ordering of pixels remain the same between the 



two views, which may not be the case in scenes 
containing narrow foreground objects such as this lamp. 
 

    
                   (a)                                           (b) 
Figure 4: Initial image pair of a church. (a) Left image. 
(b) Right image. 
 

 
 
Figure 5: Result of the visual matching checkerboard 
blend with the original image 
 
Our dense matching results are good enough to allow for a 
robust 3D reconstruction. RANSAC is applied to 
eliminate the outliers in dense matching. More than 70% 
of the correspondences are kept and they are enough to 
offer an acceptable reconstruction. The obtained 3D 
structure of the church is shown in Figure 6. The structure 
of the building is well recovered and the wall is smooth. 
This demonstrated the good performance of our dense 
matching algorithm. The top view is slightly distorted as 
we have no top view images. 
 

    
                     (a)                                        (b) 
Figure 6: Reconstructed 3D structure of the church. (a) 
Front view. (b) Top view. 
 
The new algorithm has also been applied to rectified 
images. The image pair of the church after rectification is 
shown in Figure 7. The size of the image is 836×490 
pixels and the range of the disparity is as large as 40 
pixels. The resulting depth map is shown in Figure 8(a). 

Similar to Figure 5, errors mainly occur on the glass 
windows. The algorithm performs well in other parts of 
the images in spite of the large disparity range. Many 
other algorithms cannot cope with this due to the large 
resources consumed. 
To demonstrate the usefulness of the adaptive window 
and the modified SSD, we also computed the depth map 
with a constant window and the traditional SSD for 
comparison, which is shown in Figure 8(b). We can see 
that the performance is obviously worse than our 
algorithm, especially in areas with less texture and sharp 
depth discontinuities such as near the roof of the building. 
 

   
                    (a)                                           (b) 
Figure 7: Rectified image pair of the church. (a) Left 
image. (b) Right image. 
 

   
                    (a)                                           (b) 
Figure 8: Depth map of the church obtained with (a) the 
new algorithm. (b) constant window and traditional SSD. 
 
3D reconstruction has also been performed using dense 
matching results obtained from rectified images. The 
performance is approximately the same as images without 
rectification shown in Figure 6. In both cases, the 
percentage of the number of good points as a function of 
re-projection errors in pixels are shown in Figure 9 for 
comparison. It can be seen clearly that reconstruction with 
rectification has better performance. 
 

  
 
Figure 9:  Percentage of the number of good points as a 
function of re-projection errors in pixels 
 



To compare our algorithm with others, we also use the 
test data recommended in [10]. The University of 
Tsukuba “head and lamp”  data set is selected. Figure 10 
shows the reference image and the ground truth disparities 
respectively. The depth map obtained by our algorithm is 
shown in Figure 11. We can see that the depth map is 
smooth in most areas while the depth discontinuities 
around different objects are preserved at the same time. 
Depth maps obtained by other algorithms can be found in 
[10]. It should be noted that our dense matching algorithm 
is developed for 3D reconstruction from an image 
sequence captured by a hand-held camera. So its main 
advantage is that it handles images without rectification 
and makes good use of the correspondences of the feature 
points, which are available at the stage of dense matching. 
And it does well in our project of 3D reconstruction 
though it does not show better performance than some of 
the algorithms mentioned in [10] when dealing with stereo 
images selected from the testing data set. 
 

    
                  (a)                                         (b) 
Figure 10: Testing image of the University of Tsukuba 
“head and lamp”  data set. (a) Reference image. (b) 
Ground truth disparities. 
 

  
 
Figure 11: Depth map obtained by our algorithm 

6. Conclusions 

A novel dense matching algorithm based on propagation 
with Voronoi diagram is proposed in this paper. It is 
effective in eliminating large errors between repetitive 
patterns and in improving the efficiency. It works for a 
pair of images with or without rectification. In our 
experiments with real data, an overwhelming majority of 
the dense correspondences are correct. The results are 
good enough to allow for a robust 3D reconstruction. The 
algorithm has two steps. The first step uses Voronoi 

diagram of the feature points to divide the image into a 
number of cells. The second step consists of dense 
matching by propagation from the matched seed feature 
point of each cell. A SSD in a window weighted by 
Gaussian coefficients is used as the matching score. Thus 
the weight in the centre is larger than those towards the 
edges of the window. All of these contribute to the 
improved performance of the proposed dense matching 
algorithm relative to most classical approaches.  
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