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Abstract

In this paper, we present an enhancement of the fuzzy
connectedness-based image segmentation method based
on dynamic computation of adaptive weights for the ho-
mogeneity and the directional gradient energy functions.
Adaptive weights enhance the performance and robustness
of the conventional fuzzy connectedness-based segmenta-
tion while decreasing the degree of user interaction. The
accuracy of the adaptive fuzzy connectedness-based seg-
mentation of typical fuzzy medical images is assessed with
respect to the conventional fuzzy connectedness.

1. Introduction
Medical image computing has revolutionized the field of
medicine by providing novel methods to extract and visu-
alize information from medical data, acquired using various
acquisition modalities. Image segmentation is one of the
most important steps as in the analysis of the preprocessed
patient image data, which can help in diagnosis, treatment
planning, as well as treatment delivery. The main goal of
the segmentation process is to divide an image into parts
that have a strong correlation with objects or areas of the
real world depicted in the image. Thus, segmented im-
ages make any abnormalities in the tissue distinctly visible.
Hard or binary segmentation techniques have been the focus
of research for many decades. However, medical images
are fuzzy, they are characterized as a composition of sig-
nal intensities specific to different tissue types, noise, blur-
ring, background variation, partial voluming, and certain
acquisition-specific effects (e.g., surface coil intensity fall
off in MR imaging). Moreover, anatomical objects in med-
ical data are characterized by certain intensity features and
patterns of intensity variations. Thus, medical image seg-
mentation requires more complex classification basis than
merely intensity values.

The fuzzy connectedness-based image segmentation
framework developed by Udupa and his collaborators [6, 7]
assigns fuzzy affinities to the target object as compared to
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hard binary classification. The affinity is computed as the
weighted sum of the intensity and the intensity gradient in
the neighborhood of the pixel to capture the intensity fea-
tures and patterns of intensity variations. However, this
framework assumes user selected values for the associated
weights. Thus, the resultant fuzzy connectedness map is
sensitive to the combination of features of the target region
and the selected weight.

In this paper, we propose employing dynamically com-
puted adaptive weights for the homogeneity and the gradi-
ent energy functions, thus decreasing user interaction. Since
the adjacency of a pixel to the seed pixel in intensity and
gradient space depends on the location of the pixel relative
to target region centroid, adaptive weights introduce shift-
variance to the definition of fuzzy connectedness. In ad-
dition, we employ the direction of the gradient along with
its magnitude, which gives importance to variations in in-
tensity in a specific direction. The remainder of the pa-
per is organized as follows: In Section 2, we provide a
brief overview of the conventional fuzzy connectedness-
based image segmentation. Section 3 provides details of
our modifications to the conventional fuzzy connectedness-
based fuzzy segmentation. We present a comparison study
of the adaptive weights fuzzy connectedness with respect
to conventional fuzzy connectedness in Section 4. Finally,
Section 5 summarizes out findings.

2. Fuzzy Connectedness
The Fuzzy Connected Image Segmentation framework de-
veloped by Udupa and his collaborators [6, 7] assigns fuzzy
affinities to the target object during classification, which are
used for the segmentation of the target object in the im-
age. The affinity between the two given pixels (or voxels) in
an image (or a volume) is defined as a combined weighted
function of the degree of coordinate space adjacency, the
degree of intensity space adjacency, and the degree of in-
tensity gradient space adjacency to the corresponding target
object features. The goal is to capture the specific intensity
patterns attached to the object of interest.

Notation: A binary scene over a fuzzy digital space
(Zn, α) is a pairς = (C, f), whereC is an-dimensional
array of spels (spatial elements - pixels or voxels) andf is a



function whose domain isC, called the scene domain, and
whose range is a subset of the closed interval[0, 1]. Fuzzy
affinity k is any reflexive and symmetric fuzzy relation in
C, that is [6]:

k = {((c, d), µκ(c, d))|(c, d) ∈ C}
µκ : C × C → [0, 1]
µκ(c, c) = 1,∀c ∈ C
µκ(c, d) = µκ(d, c), ∀(c, d) ∈ C .

(1)

The general form ofµκ can be written as follows:
µκ(c, d) = h(µα(c, d), µψ(c, d), µφ(c, d), c, d) ∀(c, d) ∈
C, where: µα(c, d) represents the degree of coordinate
space adjacency ofc and d; µψ represents the degree
of intensity space adjacency ofc and d; and µφ repre-
sents the degree of intensity gradient space adjacency ofc
and d to the corresponding target object features. Fuzzy
k-connectednessK is a fuzzy relationship in C, where
µκ(c, d) is the strength of the strongest path betweenc and
d, and the strength of a path is the smallest affinity along
the path. A fuzzy connected component is defined as a
hard binary relationshipKθ in C based on the fuzzyk-
connectedness:

µκ(c, d) =
{

1 iff µκ(c, d) ≥ θ ∈ [0, 1]
0 otherwise.

(2)

Let Oθ be an equivalence class [4] of the relationKθ in C.
A fuzzyk-componentΓθ of C of strengthθ is a fuzzy subset
of C defined by the membership function [6]:

µΓθ
=

{
f(c) iff c ∈ Oθ

0 otherwise.
(3)

The equivalence classOθ ⊂ C, such that for any(c, d) ∈ C,
µκ(c, d) ≥ θ, θ ∈ [0, 1], and for anye ∈ {C − Oθ},
µκ(c, d) < θ. The notation[O]θ is used to denote the equiv-
alence class ofKθ that containsO for any O ∈ C. The
fuzzy k-component ofC that containsO, denotedΓθ(O),
is a fuzzy subset ofC whose membership function is given
by:

µΓθ(O) =
{

f(c) iff c ∈ [O]θ
0 otherwise.

(4)

A fuzzy kθ-object of ς is a fuzzy k-component ofς of
strengthθ. For any spelO ∈ C, a fuzzykθ-object of ς
that containsO is a fuzzyk-component ofς of strengthθ
that containsO. Givenk, O, θ, andς, a fuzzykθ-object of
ς of strengthθ ∈ [0, 1] containingO, for anyO ∈ C, can
be computed via dynamic programming [7].

Fuzzy Connectedness-based Segmentation:In a
generic implementation of fuzzy connectedness forc, d ∈
C:µκ(c, d) = h(µα(c, d), f(c), f(d), c, d), wherec, d are
the image locations of the two pixels,µα(c, d) is an ad-
jacency function based on the distance of the two pixels,

(a) (b) (c) (d) (e)

Figure 1: Fuzzy affinity maps of short-axis cardiac MRI (a),
for which the weight for intensity energy function is (b) 1.0,
(c) 0.75, (d) 0.50, and (e) 0.25, respectively.

andf(c) andf(d) are the intensity of pixelsc andd, re-
spectively. In this general form,µκ(c, d) is shift-variant. In
other words, it is dependent on the location of pixelsc and
d. A more specific and shift-invariant definition for a fuzzy
affinity was introduced in [6]:

µκ(c, d) = µα(c, d)[ω1h1(f(c), f(d))
+ω2h2(f(c), f(d))],

µκ(c, c) = 1
(5)

where,µκ(c, d) is a linear combination ofh1(f(c), f(d))
andh2(f(c), f(d)), with w1 + w2 = 1. The three features
taken into consideration are: the adjacency between the pix-
elsµα(c, d), the intensity of the pixelsh1(f(c), f(d)), and
the gradient of the pixelsh2(f(c), f(d)).

The adjacency functionµα(c, d) is assumed to be a hard
adjacency relation, such that:

µα(c, d) =





1 if
√∑

i

(ci − di)2 ≤ 1

0 if otherwise ,
(6)

whereci (0 ≤ i ≤ n) are the pixel’s coordinates inn di-
mensions. The functionsh1 andh2 are Gaussian functions
of 1

2 (f(c)+f(d)) and|f(c)−f(d)|, respectively, such that:

h1(f(c), f(d)) = e−
1
2 [

1
2 (f(c)+f(d))−m1

s1
]2

h2(f(c), f(d)) = e−
1
2 [

(|f(c)−f(d)|)−m2
s2

]2
(7)

wherem1 ands1 are the mean intensity and standard devi-
ation of the intensity of the sample region andm2 ands2

are the mean and standard deviation of the gradient of the
sample region.

3. Adaptive Fuzzy Connectedness
With ω1 andω2 kept as free parameters, the results obtained
from fuzzy connectedness remain highly sensitive to the se-
lection of the weight values. Fig. 1 depicts how the affini-
ties attached to pixels vary. Note that a higher weight for
the intensity energy function fails to capture the fall in in-
tensity from right to left. However, this falloff is captured
better as the weight for gradient energy function increases



and attaches more and more uniform affinity values over
the target region, while enhancing the boundary. One may
manually adjust these weights in order to find the most suit-
able combination, but this does not help the cause of au-
tomatic or minimal user interaction segmentation. To that
end, we have developed a method to adapt these weights
dynamically. Specifically, we computeω1 andω2 as adap-
tive parameters depending on the ratio of homogeneity and
gradient function values at each spel location, as follows:
ω1 = h1

(h1+h2)
andω2 = 1− w1.

We have keptα as the hard adjacency relationship (i.e.,
4-adjacency forn=2 and 6-adjacency forn=3). To improve
the accuracy of computation of the intensity gradient space
adjacency, we incorporate gradient information from alln
directions. This directional gradients method captures the
gradual change in intensity in one direction, typical in med-
ical images, much better than the simple mean gradient as
depicted in Figs. 2(b,c). Our method of weight assignment
takes advantage of the fact that the closer the spel is to the
center of the target object the higher will be the degree of
intensity space adjacency as compared to when the spel is
near the boundary of the target. As the spel moves towards
the boundary automatically more weight is assigned to the
degree of adjacency in intensity gradient space, thus en-
abling more accurate boundary definition. As it can be seen
from Fig. 2(d), depicting the result using adaptive weights
fuzzy connectedness with directional gradients, our pro-
posed method enhances the values of affinity attached to
the pixels of the target object, and thus resulting in better
defined fuzzy objects. This is accomplished without involv-
ing the user to find the best possible combination ofω1 and
ω2. Fig. 4 depicts the improvements achieved by these ex-
tensions and modifications. As our refined fuzzy connect-
edness attaches much higher and uniform affinities to the
target object relative to rest of the image, the edge magni-
tudes of fuzzy connectedness images are pronounced which
is crucial for further automation of the segmentation of the
target object. As can be seen from Fig. 2(j), a valley be-
tween the target region and the rest of the image in affinity
image histogram is broadened by the adaptive fuzzy con-
nectedness compared to conventional fuzzy connectedness.
This valley can be detected easily by Otsu’s auto threshold-
ing algorithm [3]. This automatic threshold detection of the
target region relieves the user of deciding threshold of affin-
ity map for object extraction. The only manual interaction
left is the selection of the seed pixel.

3.1. Fuzzy Object Extraction Algorithm
In this section, we present the modified algorithm for adap-
tive n-fuzzy object extraction.

AdaptiveκFOE algorithm
Input : ς, o, andκ, as defined previously in section??.
Output :Ko − scene of ς, denotedςo.

(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

Figure 2: Fuzzy affinity values are mapped to gray scale
(0-255) using the value 0.5 as the weight for the inten-
sity energy function. (a) a synthetic image and the resul-
tant affinity maps for (b) the mean gradient, (c) the direc-
tional gradient, and (d) the adaptive weights directional gra-
dient method, respectively. (e) Sample noisy image from
the phantom dataset and (f) corresponding histogram. The
affinity map for (g) the conventional fuzzy connectedness
method and (h) the resultant histogram. The affinity map
for (i) the adaptive fuzzy connectedness and (j) the resultant
histogram. (k) Automatically detected threshold value for
the affinity image and (l) the resultant thresholded image.

Auxiliary Data Structures : An nD array representing the
Ko − scene ςo = (Co, fo) of ς and a queueQ of spels.
Pseudo code:
set all elements ofςo to 0 excepto which is set to 1;

push all spelsc ∈ ςo such thatµκ(o, c) > 0 to Q;
whileQ is not empty do{

remove a spelc from Q;
find fmax = maxd∈Co [min(fo(d), µκ(c, d))];
if fmax > fo(c) {

setfo(c) = fmax;
push all spelse such thatµκ(c, e) > 0 to Q;

}
}

The fuzzy affinityµκ(c, d) is computed as:

µκ(c, d) = µα(c, d)[ h2
1

h1+h2
+ h2

2
h1+h2

],
µκ(c, c) = 1

(8)

and the gradient energy function is given by:

h2(f(c), f(d)) = e
− 1

2 [
(|f(c)−f(d)|)−md(c,d)

sd(c,d)
]2

(9)



wheremd(c,d) andsd(c,d) are the mean and standard devi-
ation of the intensity gradient of the sample region in the
direction fromc to d.

4. Performance Evaluation

In this section, first we present the results of the adaptive
fuzzy connectedness segmentation algorithm on a phan-
tom data set. Next, the adaptive fuzzy segmentation algo-
rithm results will be compared to the results of the conven-
tional fuzzy connectedness-based segmentation. Finally, we
present the results of the fuzzy segmentation algorithm on
actual MR data.

One of the main challenges with medical data is that the
ground truth cannot be exactly defined. To overcome this
problem, we have created a phantom data set where the
ground truth is already known. Testing a segmentation al-
gorithm on a phantom data set allows for the establishment
of a ground truth and the definition of a metric. This type of
testing does not take into account the inter- and intra-rater
variations that result in a less than a gold standard in the
realistic world of medical imaging. However, the use of a
phantom data set allows for an analysis of the technique to
decide if, it is worthy of more arduous testing on real data.
The phantom images contain similar intensities of a med-
ical image and posses varying degrees of blur, noise, and
background intensity variation. In fact, these three varia-
tions will serve as the parameters to assess the robustness
of the adaptive fuzzy connectedness-based segmentation al-
gorithm for medical image data.

Noise and blurring are always present in image acqui-
sition; most especially in medical image acquisition as a
result of the inaccuracies imposed by the nature of the scan-
ners. A background intensity variation has been added to
account for a common issue in medical images in which a
shift in intensity variation from one side of the image to an-
other may cause the region of interest, if it is a large enough
region, to consist of significantly different intensity levels.
This causes a problem for most segmentation algorithms
that are solely based on segmenting the region of interest by
its intensity characteristics. The inhomogeneity of the most
tissue types in the human body and partial voluming adds to
these effects. The goal is to explore the results of the adap-
tive fuzzy connectedness-based segmentation algorithm on
the phantom data sets to determine if this algorithm is well
suited for medical images and compare it with the conven-
tional fuzzy connectedness-based segmentation.

A phantom data set was developed,P = {Ci|Ci =
(C, f), 1 ≤ i ≤ 60}, where eachCi is 150 x 150 pixels and
possesses a region of interest similar in structure to that of
a short-axis MR-scan of a left ventricle. With this original
image, a total of 60 phantom images were created by adding
four varying degrees of Gaussian blurring, five varying de-

grees of zero-mean Gaussian white noise, and two degrees
of background variation. The Gaussian blurring was imple-
mented using Gaussian blur filter with a kernel size of five,
in order of increasing blur levelsB0 : σ = 0; B1 : σ =
0.25; B2 : σ = 0.5; B3 : σ = 0.75; andB4 : σ = 1.0.
The zero-mean Gaussian white noise was implemented as
follows: N0 : σ = 0; N1 : σ = 0.001; N2 : σ = 0.003;
N3 : σ = 0.005; N4 : σ = 0.007; andN5 : σ = 0.01.
The five degrees of blur and six degrees of noise create a
total of thirty possible combinations which will be called
setBV0, such thatBV0 = {Ci|Ci ⊂ P, 1 ≤ i ≤ 30}. In
addition, a new set of thirty phantoms possessing the same
levels of blur and noise but containing an added background
variation were created. We call this set of thirty images set
BV1, such thatBV1 = {Ci|Ci ⊂ P, 31 ≤ i ≤ 60}. The
background variation was implemented using a slow vary-
ing ramp such that 0 was added to the first column and 30
was added to the last column. Figs. 3(a-d) depict examples
from the phantom data set. First, we will demonstrate how
the adaptive fuzzy connectedness-based segmentation com-
pares to a simple method of thresholding. In order to objec-
tively compute the best possible threshold we define figures
of merit for the accuracy of segmentation as follows [5]:
For any sceneC = (C, f), we denote byCt = (C, f t) the
binary scene which results from thresholdingC at t. That is
for anyc ∈ C

f t(c) =
{

1 if f t ≥ t
0 if otherwise.

(10)

For the accuracy of segmentation, we define a figure of
merit (FOM), such that:

FOM = max
[(

1− |Ct ⊗ CG|
|C|

)
× 100

]
, (11)

where CG represents the ground truth,|C| is the cardi-
nality of C,⊗ represents the exclusive-OR operation, and
|Ct ⊗ CG| denotes the number of 1-valued pixels inCt ⊗
CG.

Four different metrics on the fuzzy segmented objects
are analyzed in order to delineate the robustness of the adap-
tive fuzzy connectedness-based segmentation algorithm.
The four measures include the computation of the overlap
ratio, the computation of the confusion matrix, the compu-
tation of the Hausdorff distance, and the computation of the
average distance. A new validation software, VALMET [2],
was employed to perform the comprehensive quantitative
evaluations of the algorithm. The overlap experiments mea-
sure the false negatives, false positives, true negatives, and
true positives compared to the ground truth, and compute
the overlap ratio between ground truth and ROI. The over-
lap allows us to take into consideration the spatial infor-
mation by classifying the degree of overlap, making it a
superior measure of segmentation quality as compared to
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Figure 3: Examples from the phantom data setP obtained
by varying the following parameters: (a) blur, (b) noise, (c)
blur + noise and, (d) blur + noise + background variation.
The overlap ratios mapped to gray scale (0-255) for the
thresholded (e,g) and the fuzzy segmented (f,h) setsBV0

andBV1, respectively.Mij errors mapped to gray scale
(255-0) for the thresholded (i,k) and the fuzzy segmented
(j,l) setsBV0 and BV1, respectively. Hausdorff distance
metric (m,n) and average distance metric (o,p) mapped to
gray scale (0-255) for setsBV0 andBV1, respectively.

the mean and standard deviation. Intuitively, a larger de-
gree of overlap signifies a better segmentation. Fig. 3(e-
h) presents the measured overlap ratio obtained with VAL-
MET. The overlap measurement study quantitatively in-
dicates that the fuzzy segmentation performs significantly
better than threshold with complex images achieving90%
overlap results, where thresholding can achieve at most70%
overlap. To analyze more specifically the degree of misclas-
sification, we need to measure which pixels are classified
incorrectly and which are classified correctly. This leads us
to the confusion matrix analysis.

The confusion matrices delineate the number of pixels
that were classified as the background and ROI, both cor-
rectly and incorrectly. LetM be a confusion matrix of di-
mension N, whereMij is an element and0 ≤ i ≤ N, 0 ≤
j ≤ N . The multi-class Type I error (Mij) is defined as:

(a) (b) (c)

(d) (e) (f)

Figure 4: The mean intensity values of the segmented re-
gion of interest mapped to gray scale (0-255) for the con-
ventional fuzzy connectedness method using the value 0.5
as the weight for the intensity energy function with (a,d)
mean gradient, (b,e) directional gradient, and (c,f) adap-
tive weights with directional gradients for the setsBV0 and
BV1, respectively.

M
(k)
I = 100 ×

[(
N∑

i=0

Mik

)
−Mkk

]

[
N∑

i=0

Mik

] , where the numerator

represents the number of voxels of classk not classified as
k and the denominator is the total number of voxels of class
k. The MI errors for ROI and background are summed
to give a measure of error of misclassification. Figs. 3(i-
l) represent the sum of theM I errors for the threshold and
fuzzy segmentations of the setsBV0 andBV1. It is obvious
from examining the matrices that as the complexity of the
image increases, the degree of misclassification becomes
significantly higher in the threshold segmentation than in
the fuzzy segmentation. This shows that adaptive fuzzy
connectedness-based segmentation is robust to increasing
image complexity.

The Hausdorff distance measures the distance between
the boundaries of segmented objects. Figs. 3(m,n) depict
the Hausdorff distance between the fuzzy segmented ROI
and the gold standard for varying degrees of intensity vari-
ation, noise, and blurring. A Hausdorff distance of0 sig-
nifies that the two boundaries have a maximum directed
Hausdorff distance of0 between them. In other words, they
are equal. Increasing Hausdorff distances signify increas-
ing distance between the two boundaries. As the complex-
ity of the image increases, the distance between the fuzzy
segmented ROI and the gold standard increases.

Unlike the Hausdorff distance, the mean absolute dis-
tance calculates the average of two boundaries. Once the av-
erage boundary is found, the average distance is calculated.
The advantages of this metric are that the average distance



(a) (b)

(c) (d)

Figure 5: Comparative plots of the mean intensity val-
ues of the segmented region of interest for different
levels of (a) blur, (b) noise, (c) blur+noise, and (d)
blur+noise+background variation, respectively.

calculated may give a more accurate picture than the Haus-
dorff metric. Since in certain cases, set of boundaries dis-
similar only over small portions may have the same Haus-
dorff distance as that of globally dissimilar set of bound-
aries [1]. Additionally, the average surface distance is not
sensitive to the size of the object as the volumetric overlap
is [2, 1]. These metrics are more intuitive because they re-
sult in one number, a distance, which shows the difference
between two contours.

We use the mean values of the strength of connected-
ness attached to the ground truth as metric to compare the
performance of adaptive fuzzy connectedness-based seg-
mentation using directional gradients with respect to con-
ventional fuzzy connectedness-based segmentation. Fig. 5
shows the results of comparison study between the conven-
tional fuzzy connectedness-based segmentation and adap-
tive fuzzy connectedness-based segmentation using direc-
tional gradients on the phantom data set. The mean inten-
sity values of the segmented region of interest (Figs. 4(a-
f)) show that the introduction of directional gradients and
the adaptive weights make segmentation more robust to
noise and background variation. Figs. 5(a-d) depict consis-
tently better performance of the adaptive fuzzy connected-
ness over the conventional fuzzy connectedness. Figs. 6(a-
i) depict the results of the adaptive connectedness method
applied to medical images.

5. Conclusion

In summary, our proposed method (which dynamically
computes adaptive weights for the intensity homogeneity

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 6: Results of the conventional fuzzy connected-
ness method (b,e,h) and the adaptive fuzzy connectedness
method (c,f,i) applied to medical images (a,d,g).

and the directional intensity gradient energy functions) en-
hances the performance and robustness of the conventional
fuzzy connectedness-based segmentation while decreasing
the degree of user interaction.
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