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Abstract

The problem of video ’cut’ detectionremainslargely an
open problem, becauseof the wide nature of transitions
that occur in a digital video. This paperdescribesa shot
boundarydetectiontechniquewhich is an amalgamation
of few statisticalmethodsand measures,and robustly de-
tectscamera breaksin a full-motion videoclip. Thepro-
posedalgorithm incorporates a weightedhistogram, an
error-propagation techniquefor increasedrobustness,and
a curve-fittingtechniqueto extract partitionsfromthesim-
ilarity curve for avoiding heuristically chosenthreshold
value. The algorithm has beenvalidatedon manyvideo
clipsandis shownto giveimprovedresults.

1. Introduction
Advancesin multimediatechnologycoupledwith explosive
growth of internetandtheavailability of highcomputingre-
sourcesat affordablecosthave led to the wide-spreaduse
of digital video for variedapplications. Digital video has
a vastnumberof advantagesover other mediathat as yet
lie unexploited. Video technology, advancedasit may be
in thepresentday, still fallsshortof placingvisualinforma-
tion at thesamelevel of accessibilityascertainothermedia,
suchastext. Text documentsarefrequentlyusedto develop
ideas,andareoftentranslatedinto individualcompositions.
Similar compositionusingvideos,however, remainsfar in
thefuture. Videocomposition,asdesiredshouldnot entail
thinking aboutvideo pixels any more than text composi-
tion entailsthinkingaboutASCII charactercodes.Thusthe
effective useof video is beyond our graspbecausethe ef-
fectiveuseof its contentis not yet done.

Contentbasedvideoindexing wouldbeonesteptowards
ensuringthatvideocouldbeaccessed,manipulated,edited
andstoredaseasilyor asefficiently asany othermedium,
[1] and[4]. Theobviousproblemwith retrieval by content
is performance.Complex predicateswould prove to beex-
tremelyexpensive to evaluate.The major concernof mul-
timediaresearchgroups,hence,hasbeento provide access
structuresandmechanismsthatreducethis cost.

The first stagein video indexing is temporal videoseg-
mentation, alsoknown asshotdetectionor videopartition-
ing. This problemcanbe statedasfollows: given a video
clip, to define, identify and segregatethe elementalunits
or quantaof the videoclip thatcouldbe independentlyac-
cessed,storedand modified. Suchelementalunits called
shotswould be representative of the entirevideo clip, and
accessto themwould entailaccessto theclip in its entirety.
The shot-level organizationof video documentsis consid-
eredmostappropriatefor videobrowsingandcontent-based
retrieval. A shotor a take, in videoparlance,simply refers
to a contiguoussequenceof oneor morevideo framesde-
picting a continuousaction that remainsmore or lessre-
strictedto a certainregion in spaceandtime, [7] and[9].

However, shotboundariesarevague,thereexistsgradual
transitions,illumination changesand/orcameramovement
within a shot. Video transitioncanbe a hard-cut; a grad-
ual transitioncanbe a fade, wipe, slide or a dissolve[14].
In recentyears,the researchon automaticshot detection
hasexploded,applicationsare increasingand many algo-
rithmshavebeenpublishedto solve shotdetectionproblem
for varying degreesof complexity of real-data.Many per-
formancestudieshavebeencarriedoutandthecomparative
resultspublishedfor different classesof video data,e.g.,
[3], [8] and[16]. All thesealgorithmshavetheirown merits
anddemerits- seetherecentsurvey articlesby Koprinska&
Carrato[11] andLienhart[14]. An openchallengeto almost
all suchalgorithmsis to capturetrue transitionsandmini-
mize falsepositives/detectionin the presenceof unknown
variations. Many algorithmsuseheuristically chosenpa-
rameters/procedureswhicharemosteffectiveto aparticular
classof videousingsomedomain-specificknowledge.

In this paper, we presenta new shotdetectionalgorithm
whichis essentiallyanamalgamationof someknown statis-
tical methodsand measures,and robustly detectscamera-
breaksin a full-motion real video clip. The remainderof
the paperis organizedasfollows. In section2, we briefly
review the existing approaches.We describe,in section3,
our approachwhich doestemporalsegmentationwith min-
imal numberof user-definedparameters.Thenwe present



resultsin section4 along with a discussion. Finally, we
draw conclusionsin section5.

2. Related Work
A largenumberof shotdetectionalgorithmshave beende-
veloped,they canbeclassifiedbasedon few coreconcepts.
Essentially, videosegmentationis a two-phasephase.Dis-
continuityor thesimilarity betweentwo consecutiveframes
is measuredfollowedby a classifierstageto detectthetran-
sition basedon somedecisionstrategy. Most importantis
the underlying detectionscheme. Many metrics and the
classificationalgorithmshave beenproposedin the litera-
ture during the pastdecade,e.g., startingwith the initial
work of Zhanget al. [22] andHampapuret al. [10] to some
recentwork of Gargi et al. [8] andZhanget al. [21]. In the
following paragraphsof thissection,weshallbriefly review
the metricsusedandthe classificationstrategy adopted,in
general,andbuild the problemdefinition for the our work
presentedin this paper.

Most of the video segmentationalgorithmscan be di-
videdinto two broadcategories:pixel-basedalgorithmsand
feature-based.Pixel-basedtechniquesare the most rudi-
mentarytechniques,andmerelyuseInter-frameDifference
(ID) countedin termsof thepixelsasthediscontinuitymea-
sure.TheInter-frameDifferencemaybesimply a countof
all the pixels that change,betweentwo successive image
framesin thesequence,in valuemorethansomethreshold
value(Eq. 1). Alternatively, ID is the sumof the absolute
difference,in intensityvalues,of all thepixelsbetweentwo
consecutive framesin a sequence(Eq. 2). The Inter-frame
Difference(ID) measurewould becalculatedas:���������	�
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Pixel-basedinter-framedifferencemethodsarethe sim-

plest,andhave beenexpandedby breakingimagesinto re-
gionsandcomparingthe statisticalmeasuresof the pixels
in the respective regions. Sincefadesareproducedby lin-
earscalingof the pixel intensitiesover time, this approach
is particularlysuitedto detectfadesin video[14]. Thede-
cision regardingpresenceof a break is basedon an appro-
priateselectionof thethresholdvalue.

Feature-basedtechniquesare basedon global or local
representationof the imageframes. Pixel-valueitself can
be a feature,we discussedthis subclassin the preceeding

paragraphs.Most commonlyusedfeaturefor video seg-
mentationis a histogram,e.g.,[6], [16], [18] and[20].

A histogramis createdfor the currentframe by calcu-
lating the numberof timeseachof the discretepixel value
appearsin theframe.Thesehistogram-basedtechniquesex-
tractandnormalizea vectorequalin sizeto the numberof
levels the imageis codedin. The vectoris thencompared
with or matchedagainstothervectorsof similar imagesin
the sequenceto confirm a certainminimum degreeof dis-
similarity. If sucha criterion is successfullymet, the cor-
respondingimageis labeledas a break. The normalized
histogramwould becalculatedas:U 	 � ��" 
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However, therearemany metricsfor matchingthe his-
tograms. Most of the metricsarederived from the differ-
ence,theintersectionor theproduct,or a square- seeDuda
et al. [5] for details.

Dugadetal. [6] haveextendedonthiswork by including
a secondstagein their detectionprocess.In orderto min-
imize the numberof misseddetectionsandthe numberof
incorrectclassifications,they proposeduseof a likelihood
ratio for comparingtwo frameregions.Theframesarefirst
dividedinto smallerimageblocks,andtheseblocksarethen
comparedusingstatisticalmeasures.Their likelihoodratio
is computedas: t

S 
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and, T 	 and x 	 denotethestatisticalmeanandstandardde-
viation,respectively, of thegivenregionin frame P . Thisra-
tio attainsits minimumvalueif x 	 = x 	>= � and T 	 = T 	>= � .
Thereare many other variationsproposedfor histogram-
basedalgorithms.

A majoradvantageof usinghistogramasafeatureis that
thehistogramis relatively insensitive to theobject-position
in theframe,andthus,this techniqueis suitablein presence
of cameraand/orobjectmotion. However, this measureis
sensitive to noise,illumination changesandobject-scaling
anddoesnotscalewell with thematching.Nonetheless,his-
togramremainsthe mostcommonlyusedfeaturein video
segmentationdueto its easeof implementationandtheef-
fectiveness.



Many other featuresfor video segmentationwere used
too - e.g., tracking of edges,motion vector differences
andeigenspacedecompositionto maximizethedatavaria-
tion. Apartfrom thresholding,hidden-Markov models,tree-
classifier, supervisedlearningandclusteringwereusedby
differentresearchersto detectthe shots. For merits, limi-
tationsandtheperformancecharacterizationof eachof the
approaches- see[11].

Anotherwayto categorizethevideo-partitioningprocess
is thetypeof video-datausedastheinput. Someof thealgo-
rithmsweredesignedto work on compressedvideostream,
e.g., Yeo & Liu’s algorithm [20] usesMPEG compressed
video streamrather than the raw footage. However, this
distinctionis not very important,sincepracticallyall of the
algorithmscanbe appliedto the compressedaswell as to
the uncompresseddata. Theremay be differencesin how
the certainfeaturesarecomputed,but the coreconceptof
thealgorithmremainsthesame.

Other distinction of video-datais the grey-level input
or the color input to computethe discontinuity. Color
videosareusedmostoftenwith differentcolor spacessuch
asRGB, HSV, YIQ, Munsell andothercolor spaces[19].
Main advantageof usingcolor is theadditionalinformation
availablefor detectingthediscontinuityboth in spatialand
temporalspaces,andtheeaseof implementation.

Shotdetectionalgorithmsarefurtherclassifiedbasedon
their suitability on detectingthe specifictypesof the tran-
sitions - hard-cut,fade,wipe, slide or dissolve. Decision
parametersvary for transitiontypesand the chosenalgo-
rithm. Lienhart[14] discussedtheunderlyingconceptsbe-
hind eachtransitiontypesbasedon the characterizationof
thevideo-datain termsof higher-level semantics,andsug-
gestedguidelinesfor useof thetestedapproaches.

Choice of the best video partitioning method is not
straightforward. Therearemany factorsthataffect theper-
formance.Most importantparametersaffectingtheperfor-
manceare the decisionparameterswhich vary from data-
to-data,algorithm-to-algorithmand the transition-type-to-
another-type. In this work, we attemptto extract the deci-
sionparametersfrom thecharacterizationof thevideodata
in termsof statisticaland information-theoreticmeasures,
andapplyto detecttheappropriatetransitions.

3. The Algorithm

Thealgorithmproposedhereis fundamentallya histogram-
matchingtechnique. In addition,however, it incorporates
threeadditionalfeatures. Firstly, the histogramsusedare
weightedhistograms; the definition and constructionof
suchhistogramsis outlinedin sub-section3.1. Secondly, an
error-propagationmodelis introducedto inducerobustness,
this is describedin sub-section3.2. Matching of the his-
togramsusinga � 3 measureis presentedin sub-section3.3.

Lastly, sub-section3.4 discussesa statisticalmethodbased
on modifiedB-Splinecurve fitting which obviatestheneed
for any heuristicallydeterminedthresholdvaluewhile de-
ciding uponcamerabreaks.

3.1. Weighted Histogram
Theweightedhistogramfunctionis definedbelow:U 	 � ��" 
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Here,the imagematrix is first divided into Y concentric

regions,and eachis assigneda weight. The incrementto
thehistogramvalue

U 	q� �o" is now no longera binaryvalue;
it now dependson the physicallocationof the pixel under
consideration.The Y concentricregions can be linked to
margins drawn arounda centralregion of maximuminter-
estor weight;any pixel existingwithin this regionwill con-
tributea unit incrementto thehistogramvalue.This central
region is indexedby � = 0, andtheoutermostregionby � =Y .

Suchan algorithmimplicitly assignslessweight to the
pixelsborderingtheregionof interest,which, in mostcases
of trackingandpanning,is the centralregion of theframe.
Thehighertheprobabilityof theinputvideoclip containing
sequenceswith rapidtrackingor panning,thelargershould
be the valueof � � chosen,while the natureof the objects
beingtrackeddecidesthevalueof theparameterY ; smaller
objectsin thesequencewould call for a largervalueof Y .

A weighted histogrambasedapproachhas been suc-
cessfullyappliedby Kumar& Rockett to extractingscale,
translationand rotation invariant local featuresfor object
recognitionfrom two-dimensionalnoisyimages,andresults
alongwith a detaileddiscussionon weightedhistogramare
presentedin [13].

3.2. Error Propagation
Globalmeasuressuchashistogramsdescribethewholema-
trix by a single Q -tuple, Q is the numberof bins in thehis-
togram. Thoughthe transformationof the completeframe
into the representationspaceis straightforward and needs
no heuristicor parameterdefinition, sucha transformation
shouldat thesametime ensurethat spuriousdatais recog-
nizedassuch.Kumar& Rockett, [12] and[13], haveexam-
inedtheneedfor error-propagationto achieve suchrobust-
nessin a histogram-matchingalgorithm. They stressedon
theimportanceof ensuringtheright mix of errorsandtheir
subsequentpropagation,so that the effect of noiseon the



ability of thealgorithmto correctlymatchtwo functionsis
diminished.Thisway, they couldeliminatethefalsesignals
and capturethe diminishing signalsbecauseof noiseand
theotherunknown variations.

Such noise creeps inevitably in video clips where
changesin illumination etc. introducemore than a linear
shift of the histogram. Although the innateshapeof the
histogramhashardly fluctuated,yet a histogram-matching
algorithm (which is largely basedon bin-to-bin compari-
son,differenceor product)would view sucha histogramas
onewhich is significantlychanged.Any matchingcriterion
would thencompletelyfail, andclassify the histogramin-
stanceasonerepresentinganentirelydifferententity.

In somesolutionsto this problem, the effects of data
degradation are encounteredby some tolerance at the
matching/classificationstage.Suchapproachessacrificethe
discriminatorycapabilityof thematchingcriteria.Still oth-
ersrely on a smoothingof the global representation;such
global operations,however, may filter out importantinfor-
mation,andmay againlack discrimination. However, en-
suringthe right mix of errorsandtheir subsequentpropa-
gation for a realistic blur can optimize the discriminatory
powerof thealgorithmin presenceof data-noiseanddegra-
dation- see[12] for implementationdetails.

In this work, we introducesuchanerror-propagationby
the applicationof a Gaussianwindow - normalizedto unit
area,which runsacrosstheimagehistogramandblursit to
an extent that should,in the ideal situation,be determined
througha processof contentidentification(in this case,this
is doneby measuringthe information contentsin a local-
ized window [7]). This ensuresthat any insignificantlevel
of noisein thesignalis promptlyignoredandthatit doesnot
manifestasa likely candidatefor classificationasa transi-
tion.

3.3. Matching Strategy
Therearemany metricsto matchtwo histograms,e.g.,sim-
ple or weighteddifference,intersectionor squareddiffer-
ence[5]. OuralgorithmusestheBhattacharryametricasthe
matchingcriterion. The Bhattacharryadistance[2], which
is a generalized� 3 measure,possessessomeimmunity to
noiseand clutter. Hereone attemptsto maximizethe en-
ergy function, which, here, is merely the dot productbe-
tweenthe two tuplesunderconsideration.Mathematically,
theBhattacharryametricis definedas:� 	 
 �� -5�q*o(���/�/2� �1� , U 	 � �o"c� U 	>= � � ��" (6)
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SeeKumar& Rockett [13] for the the normalizationof
thehistogramandtheir dot-product.

3.4. Labeling Partitions
Many algorithmsimposea hard cut-off thresholdto dis-
criminatebetweengenuineandfake candidates.But such
an approachhasobviousdrawbacks:a videoclip cancon-
taingradualshottransitionsthatwouldyield neitherasharp
noradeepminimumbut would insteadgiveriseto acluster
or rathershallow minima. The issuewould thenbe decid-
ing which singlememberof theclusterto labelasa camera
break. It becomesthe need,therefore,to devise an algo-
rithm that will be ableto recognizea relatively deepmin-
imum, one whosedepthand sharpnessin that video clip
qualifiesit asa valid partition. This hasbeenachievedhere
throughatwo-stageeliminationprocess,whichis discussed
in thefollowing sub-sections.

3.4.1 Curve Fitting Using B-Spline Curves

Distinct breaksarealwaysvery sharp,oftenresemblingin-
verteddelta functions. So any curve fitting techniqueis
boundto ignorepartitionpointscompletely. Evenafifth de-
greeinterpolatingpolynomialwould not beableto include
thecut pointsin its approximatedcurve.

One approachwould be to apply curve fitting using
an elementarypolynomial such as third or fourth degree
Newton-Gregory polynomial,andthenlabelingonly those
points that have beenignored in plotting the final curve.
However the resultswould be unpredictablefor two rea-
sons:thereis no guaranteethatevery partitionpoint would
necessarilybeignoredby theinterpolatingpolynomial;sec-
ondly, thealgorithmwouldintroduceanumberof falsemin-
ima in attemptingto includethepartitionpoints.

A simplerandmorereliablerouteto achieving thesame
goal is to merelytake the first differenceof the raw curve,
andapply any interpolatingmethodto determinethe parti-
tions. This is the methodadoptedhere. The degreeof the
interpolatingpolynomial should,again,be determinedby
anapproximatebeforehandknowledgeof the natureof the
video clip, althoughusinga higherdegreepolynomial (of
sayfive) would alwaysgive accurateresultsbut it increases
thecomputationalcomplexity of thealgorithm.

TheinterpolatingpolynomialsusedherearethecubicB-
Splinecurves. Thesecurvesare like Beziercurvesin that
they do not ordinarily passthroughany of thesetsof given
datapoints.They have thefollowing additionalfeatures:� A B-Spline doesnot begin and end at the extreme

points.� Theslopesof theB-Splinedo not bearany simplere-
lation with thelinesdrawn betweenthepoints.
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Figure1: Two plotsof thesimilarity curvesfor theMoskito
videoclip takenfrom [15].

The advantagewith using B-Splinesis that a separate
cubic is drawn for eachpair of points in the set,which is
exactly how the histogramcomparisonhasbeendone,[5]
and[17].

3.4.2 Statistical Thresholding

The minima singledout by the curve fitting are thensub-
jectedto a depth-test.If the depthof the minimum under
considerationis greaterthana thresholdvaluearrivedat af-
ter a statisticalevaluationof the raw data,thenthat mini-
mumis finally labeleda partitionpoint. To ensurethat the
minimalabeledaspartitionsarecorrectlymeasuredby their
relative depthin the original similarity curve, the raw data
availableprior to thecurvefitting shouldbeused.

Thus, assuminga normal distribution without loss of
generality, the similarity should fall below the following
thresholdfor thepoint to belabeleda partition:� & 
}� <�� W x (7)

wherea goodvaluefor � would bebetweenfive andsix.

4. Results and Discussion
We experimentedeachof the threesteps- weightedhis-
togram, error-propagationmodel and computationof the
thresholdvalue- on a large numberof real digital videos
that have different types of variability, e.g., illumination
changeandcameramovement.The videosvary widely in
contentand length. We experimentedwith both typesof
videos- fastvaryingsignalaswell asslow varyingsignal-
in orderto testtheefficacy of eachstepof thealgorithm.

We includesomeexampleresultsin this partof thesec-
tion alongwith a brief analysis.We areunableto include
the different clips and the detailedresultsbecauseof the
limitation on the numberof pages.Moreover, the purpose
of this work is not to comparethedetectionperformanceof

thiswork with theexistingapproaches,sowedonotpresent
thecomaprisonresultshere.Nevertheless,we includesub-
setof theresultswhichexhibitstheimprovementbecauseof
the distinct characteristicsof the algorithm,e.g.,the error-
propagationmodelalongwith the weightedhistogramand
thecomputedvalueof thethresholdfor detection.Thedis-
cussionthatfollowsdescribestheperformancesof two rep-
resentativeclassesof videos.

First we presentthe resultstaken from John’s heli-pad
video clips, therearemany video-clipavailableon the site
[15]. In general,eachvideo-clip is a color video, contains
a helicopteras the centralobject, which is moving, back-
ground is changing,illumination is getting changed,and
camerais also moving in-and-out- visit the site [15] for
viewing the video. Thus, this classof video containsthe
sufficient variationsandis a goodexampleto testthealgo-
rithm over a classof datato test the stability of the algo-
rithm.

In this section,we include the resultscomputedfor a
Moskitocolor-video clip asrepresentative results. A heli-
copter is tracked rapidly with varying backgroundacross
a sky of varying intensity. Thereare threesectionsin the
clip thatareof interest:thefirst oneoccursbetweenframes
25 and46, the secondbetween118 and139, andthe third
betweenframes256 to 271. We plot similarity matchval-
uesfor the first 280 framesof the clip in Figure1. In all
threesub-shots,many falsepeakswerecorrectlyeliminated
uponerror-propagation.For example,the secondshotthat
includesframes123to 132gave many false-breaksif there
wasnoerror-propagation,atotalof 8 false-peakswereelim-
inatedthiswaywhile onetruesignalat frame130remained
with thecomputedthresholdvalue.

Second,we includethe representative resultscomputed
for a slow-varyingvideotakenfrom a kitchen. In this clip,
a kitchenis scanned,two new objects,a window anda lady
rapidlyenterthescene(frames115through124).TheBhat-
tacharryamatchmetrics,with andwithout theerror-model,
are ploted for part of the clip in Figure 2. The similarity
curve with blur-model is clearly more evenedout. In the
absenceof the blur, the algorithmdetectsthreetransitions
at points115,120and123. This region is evenedout when
weightingandtheerrorsareapplied.All threefalsealarms
which gave the illusion of a camerabreak,areeliminated
by thecomputedvalueof thethresholdto detectahard cut.
On the otherhand,a true transitionat point 75 is detected
distinctly by both.

We testedour approachwith many video clips of dif-
ferent themesand varying nature. We comparedthe re-
sultsin termsof false-alarmsandmiss-detectionswith and
without the proposedimprovements: weightedvs. win-
dowedhistograms,with andwithouterror-propagation,and
B-splinecurve fitting. We found that the algorithmworks
well in videosof rapidscanningandfor trackingof objects.



Kitchen Room (Color, EP)

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

1.05

1 12 23 34 45 56 67 78 89 10
0

11
1

12
2

13
3

Frames

S
im

ila
rit

ie
s Without

weighting

With
weighting

 

Figure2: Two plotsof thesimilarity curvesfor thekitchen
videoclip.

Theerror-propgationhelpsin detectingfalse-alarmsdueto
changein illumination. We areunableto includerepresen-
tativeresultsalongwith a detailedanalysisdueto thepage-
limit; we shallpresentthemduringtheconference.

5. Conclusions
In this paper, we have describeda novel algorithmfor shot
boundarydetectionthat detectscamerabreakin a full mo-
tion video. The techniqueis a weightedhistogrambased
algorithmwhich includesanerror-propagationmodelto in-
ducerobustness.To avoid the selectionof a heuristically
selectedthresholdvaluefor detection,we usean informa-
tion theoreticmeasurewhich is guidedby the information
content.We experimentedwith many digital videosof both
types- slow varying and fastvarying signal - and diverse
in content,andthusdemonstratedthegenericnatureof the
algorithm. Resultsare comparedwith and without intro-
ducingtheerror-propagation,andit is shown thattheerror-
propagationmodelminimizesthefalsepositiveswithoutaf-
fectingthepresenceof thetruesignals.Extendingthiswork
to aneffectivetechniqueto extractingandsettingof various
parametersto detectingdifferenttypesof transitiontypesis
within thescopeof futurework.
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