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Abstract
Object-based video representations such as MPEG-4

have opened up new possibilities for video content access
and manipulation. In this paper, we present a new object-
based video representation paradigm, using appearance
spaces. Our scheme enables fully automated extraction
of semantic video objects for a class of sequences, and
the development of a compressed, highly flexible repre-
sentation of the video sequence based on extracted con-
tent. Our video representation supports content-based re-
trieval, as well as numerous enhanced features such as
hyperlinking of videos, motion-icons for video browsing,
automatic annotation, content-authoring facilities and se-
mantic transcoding.

Keywords: Semantic video objects, motion segmenta-
tion, appearance spaces, EigenTracking, video representa-
tion, video summarisation, content-based functionalities.

1 Introduction
With the proliferation of multimedia data on the Inter-

net, the major challenge in multimedia research is to pro-
vide efficient and effective access to multimedia data in re-
sponse to user demand. While compression is needed just
to transfer images and video over networks with limited
bandwidth, multimedia data must also be organised and
classified so that users can easily find what they are look-
ing for. In this paper, we present a novel object based video
representation scheme which enhances functional utility of
the video content.

MPEG-4 standard has proposed an object-based ap-
proach to video description. The term semantic video ob-
ject (SVO) refers to the set of 2D image regions (across
multiple frames), which correspond to a real, physical ob-
ject. So far, the stumbling block in object-based video cod-
ing has been the automation of the entire representation
process. In general, it is not possible to define SVOs using
any condition of homogeneity of image features (such as
colour, texture or luminance). It is also clearly impossible
for a video-database administrator to manually identify ob-

jects in every video sequence and describe/classify them.
Thus, researchers have either focused on developing algo-
rithms for extracting content from specific types of video
(such as sports sequences[4] or sequences containing hu-
man faces) or resorted to semi-automatic methods requir-
ing manual initialization and operator supervision [7, 9].

In this paper, we present a scheme for automated con-
struction of an object based representation scheme for
video sequences. We assume that objects of interest have
distinct relative motion from the background. We use mo-
tion segmentation and appearance-based tracking [3, 5] for
extracting these SVOs. Our method handles sequences
containing multiple objects which might occlude each
other.

In contrast to other structured spatio-temporal represen-
tations of video content based on motion cues [6], our
novel representation scheme, based on object appearance
spaces[8], is naturally amenable to meaningful classifica-
tion of extracted SVOs and content-based video retrieval.
It also enables a variety of content-based functionalities,
such as iconic video browsing, video hyperlinking, content
manipulation and semantic transcoding.

2 Content Extraction
Starting with a video shot, there are two steps to object

extraction : segmentation and tracking. While segmenta-
tion is needed to identify SVOs whenever they appear in
a video sequence, tracking is used to follow the identified
objects across multiple video-frames so that an object rep-
resentation can be developed. The key to successful extrac-
tion lies in correctly locating the segmented object region,
which is used as the starting point for the tracker. While
low-level image features (colour, texture, shape) can be
used to identify local regions of interest, motion is one of
the best cues for SVO segmentation, as it is more likely to
characterise real objects (which are not homogeneous for
any single image feature). Two commonly used motion-
based methods are background subtraction (when the back-
ground is static, known a priori or can be estimated) and



clustering of optical flow[4]. Since we are processing ar-
bitrary sequences in which the background is unknown
and may constantly be occluded by foreground objects, we
make use of an optical flow-based method. We assume that
object motion between adjacent frames approximately sat-
isfies an affine-motion model.

2.1 Motion Segmentation
Dense optical flow calculation is used to estimate the 2D

apparent motion at each pixel in the video frame. We have
used a robust computation technique [1] to reduce the sen-
sitivity to violations of the brightness constancy and spatial
smoothness assumptions underlying flow computation, and
thus improve the accuracy of detection of motion bound-
aries. For further processing, we use only that colour plane
(R,G, or B) which has maximum variation in calculated
flow values.

The frame is divided into small non-overlapping square
regions which we call boxels. The average optical flow
magnitude is calculated in each boxel. We assume that
flow magnitudes for boxels in both the moving and static
regions of the frame are normally distributed. A thresh-
old on flow magnitudes (computed iteratively) is set to the
the flow value which corresponds to minimum probability
between the maxima of these two normal distributions, so
that best discrimination is obtained. This threshold is then
used to classify boxels as foreground or background. We
use the heuristic that the background always accounts for
the majority of boxels. This ensures that our method works
even if the camera moves to follows an object, so that ob-
ject has very small apparent motion and the background
has high motion. However, best segmentation results are
obtained if the camera (and hence the background) is sta-
tionary. In this case, multiple foreground objects can be
correctly identified as long as they do not overlap spatially.

Clusters of foreground boxels are identified as possible
objects using connected-components detection. To elimi-
nate spurious clusters (due to noise), we define a thresh-
old on the minimum number of boxels required to form a
valid object. We also remove any clusters near the frame
boundaries, as these objects have partially entered/exited
the frame. The remaining valid semantic video objects are
then tracked by our appearance-based tracker.

2.2 Object Tracking
We have employed a modified version of the robust

EigenTracking formulation [3] to track the newly identi-
fied foreground objects. This method makes use of the
concept of an object’s appearance space[8]. This is a
low-dimensional vector space of object views defined by
a small number of basis images (eigenvectors), such that
a linear combination of these basis images can represent
any view of that object (to a specified accuracy). Eigen-
Tracking involves estimation of affine motion parameters

for the object region (which is initially defined by a rectan-
gular bounding box), by minimisation of a matching-error.
Instead of measuring the error in terms of pixel-intensity
difference, the projection error (of the estimated object re-
gion in the next frame) on to the object’s appearance space
is used. For an object to be tracked, it’s appearance space
must therefore be known a priori.

In our modified tracker [5], pre-built appearance spaces
for video objects are not available. Consequently, our
tracker starts with the segmented object region as the first
basis image, and dynamically updates (and thus builds) the
appearance space of the tracked object by adding a new
basis image whenever a novel view (that cannot be ade-
quately represented by the existing basis images) is en-
countered. The tracker returns an appearance space for
each tracked object, as well as the affine transformation
of the each object’s bounding box in every frame. Fig. 1
shows tracking results for two sequences.

After tracking all objects in a given sequence, the pro-
jection co-efficients for each object in every frame are cal-
culated by projecting the object (within the bounding-box)
on to each of the eigenvectors which characterize that ob-
ject. These co-efficients, together with the affine trans-
formation parameters, form the basis of our novel object-
based video representation, as discussed in Section 3.

2.3 Coupling Segmentation and Tracking
As appearance spaces are incrementally built, incorrect

tracking of video objects can corrupt their subsequent rep-
resentation by admitting wrong views to their appearance
space. Hence we need a consistency check to detect possi-
ble failure of the tracker and terminate the incorrect track.
We check that the centre of mass (CoM) of the segmented
region in every frame lies within a certain neighbourhood
of the centre of the bounding box (CoBB) of the tracked
object. If the tracker begins to drift away from the actual
object (perhaps because of substantial background within
the bounding box), the above check will soon flag an er-
ror. The tracker can then be re-initialized with the correct
segmented region in the next frame.

The number of objects can vary arbitrarily as a se-
quence progresses because of certain critical events such
as entry (exit) of objects into (from) the frame, appear-
ance/disappearance of objects within the frame, merging
of two objects into one, splitting of an object into two, or
partial occlusion of an object by stationary scene elements.
We use the segmentation results in every frame to match
object regions across frames (based on spatial location and
extent), to decide for which objects to start tracking, for
which ones to continue tracking and which tracks to ter-
minate. In order to match such corresponding regions in
successive frames, and to identify possible merging and
splitting of objects, we define two image primitives — the
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Figure 1: (a–c) Frames from the ambassador sequence, showing a car being tracked. (e–g) Tracking of a motor-bike in the
mobike sequence. (d,h) Car and motor-bike objects reconstructed from their respective appearance spaces

motion-box and the proximity-box — centered about the
CoM of each segmented object region.

For each object in the current frame, the motion-box is
that region within which that object’s CoM is assumed to
lie in the next frame or previous frame, as the object prop-
agates. Fig. 2(a,b) illustrates the CoM and motion-box
(about the CoM) for a single object. The proximity-box
of an object is slightly larger than its current spatial ex-
tent. It is used to check for cases of apparent merging and
splitting of objects, such as two people crossing paths (ap-
parent merging and splitting), a person passing behind a
railing/pole (apparent splitting), or an actor jumping onto
a moving car (merging). We need to ensure that merging
(splitting) is not confused with propagation of one object
and disappearance (appearance) of another, as this would
lead to incorrect characterization of the object which is as-
sumed to propagate smoothly. We have formulated the fol-
lowing rules to help identify these cases:

For a Motion Box in the current frame if # of CoMs in
next frame is

0 then terminate track (Object Disappearance)
1 then continue track (Consistent Propagation)

For a Proximity Box in the current frame if # of CoMs
in

next frame is �1 then case of Object Splitting
previous frame is�1 then case of Object Merging

The reader would note that, in all cases, object represen-
tation is strictly correct. A false alarm involving merging,
splitting, appearance or disappearance will only split up a
single object’s lifetime into several epochs, with a separate,
correct representation for the object in each epoch. This
only leads to a slight reduction in representation efficiency.

Frames from a sequence demonstrating three types of
events (appearance, splitting and exit) are shown in Fig. 3.
Here, a group of trucks is seen moving towards the right.

As the trucks come closer to the camera, they are spatially
separated from the group in the video frame (split) and are
extracted (appearance) as independent objects.

3 Appearance-based Video Representation
The video-object extraction scheme that has been de-

scribed thus far provides us with most of the information
required to develop a complete representation for an ar-
bitrary video sequence. Essentially this consists of the
appearance spaces of objects, along with their projection
co-efficients and affine parameters in each frame of the
video in which they exist. We have chosen to represent
both objects and frames explicitly, to allow for both con-
tent manipulation (object views/motion can be modified
in any frame) and random starting of playback (after fast-
forward/rewind, for example).

Object data contain eigenvectors characterising the ap-
pearance spaces of the respective objects. Frame data con-
sists of the affine parameters and projection co-efficients
for each constituent object. The background is most com-
monly the first frame of the sequence, JPEG encoded. If
the background does not appear to be static in the origi-
nal video (that is, the camera moves), then the background
image needs to be regularly updated by adding the resid-
ual difference (between the background in the previous and
present frames). The residuals themselves are compressed
by applying a discrete cosine transform and storing only
the low frequency co-efficients.

Our appearance-based representation implies the use of
the Karhunen-Loève transform for optimal data compres-
sion. The total size of our video representation for a 27
MB (uncompressed) video sequence is 5.2 MB. This re-
sult is reasonable considering that video compression has
not been our only concern. The object eigenvectors form
the bulk of our data stream (4.5 MB), as they are not
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Figure 2: Motion- and proximity-boxes. Frame (b) shows CoM and motion-box marked against the segmentation result for
the single object present in frame (a). Frames (c) and (d) of the persons sequence containing two objects (about to merge)
show the respective CoMs and proximity-boxes
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Figure 3: Frames of the trucks sequence showing critical events: appearance(a), exit(b & f) and splitting(d,e)

Figure 4: Illustration of Object Hierarchy. Appearance
spaces of different cars or persons can be combined in an
hierarchical manner to form generic categories.

compressed and are represented to floating-point accuracy.
Compression of eigenvectors (by creating JPEG images of
them) reduces the data size to 1.2 MB.

Object eigenspaces are particularly convenient for
meaningful organisation of video data. By performing
Gram-Schmidt orthogonalisation on the eigenvectors, ap-
pearance spaces of similar objects can be combined to form
the appearance space of an object-class. These can be fur-
ther combined, depending on class similarity, in the same
manner, resulting in an object hierarchy (see Fig. 4). Hier-
archy building is done in a semantically meaningful man-
ner under supervision. By traversing this tree-structured hi-
erarchy, a new object can be classified at each level by pro-
jecting its image onto each appearance space at that level

and choosing the class which gives minimum reconstruc-
tion error. This organisation facilitates content-based video
retrieval. Further details concerning object hierarchies and
content-based querying can be found in [5].

3.1 Micons
While searching for videos online, users would like to

browse through summaries of videos before downloading
them. These summaries should give the user a good idea
about the content of the video, by depicting critical events
and scenes. Our object- and frame-based representation
lends itself naturally to summary generation. In analogy
with ‘icons’ used for representing images, our summary
videos are called ‘motion icons,’ or just micons.

We define instances of appearance/disappearance ,
merging/splitting, entry/exit and occlusion to be critical
events that provide maximum information about the video
content. Our segmentation-tracking scheme (explained
previously) can automatically flag key frames whenever
these critical events occur. A micon thus simply consists
of the compressed representation of these key frames. Fig.
5 shows some example micons to illustrate the concept.

3.2 XML Representation
We make use of XML (Extensible Mark-up Language)

to represent the processed data after video analysis. Use of
XML was originally proposed in MPEG-7[2] as standard-
ised set of content description schemes to be attached to
existing video data formats. However, by representing the
video data itself as an XML document, we enable seman-
tic processing of high-level video features (such as objects
and their motion parameters) in addition to low-level fea-
tures (such as pixel-values and frame numbers). A sample
portion of an XML file is as follows:
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Figure 5: Micons for (a) 100-frame persons sequence and (b) 140-frame receding cars sequence.

<?xml version="1.0" encoding="UTF-8"?>
<XML4VIDEO videoName="rata01" width="320" height="240"
startFrame="67" endFrame="88" nObjects="1"
bkgContentStreamID="rata01_001.jpg">

<XML4OBJ ID="1" name="Abhijit" width="48" height="126"
x-cood="197" y-cood="163" nvectors="6"
objectStreamID="seq1_obj01" residualID="rata_res067"/>

<XML4FRAME Num="067" nObjects="1" isKeyFrame="yes">
<XML4obj ID="1" HREF="class_human"
AffineParams="70.21 0.97 -0.03 2.49 0.08 0.98"
ProjCoeffs="14.60 14.60 15.12 10.65 8.65 9.37"/>

</XML4FRAME>
.
.
.

</XML4VIDEO>

4 Enhanced Video Features
Our representation scheme provides for enhanced

content-based functionalities for any video sequence that
has been successfully processed by our system. These en-
hanced features are consequences of organising video ob-
jects in a meaningful hierarchy, based on the similarity of
their appearance spaces.
4.1 Content Manipulation

Given a video sequence coded in our format, a user
can replace the object data files or modify the affine trans-
formation parameters to obtain an altered, authored video
(with one object replaced by another, or moving in an ar-
bitrary manner). Content authoring is extensively used in
the entertainment industry for animations and special ef-
fects. It also allows end-users to produce their own videos
by modifying existing ones. A typical example is shown in
Fig. 6.
4.2 Object-based Video Hyperlinking

Textual hyperlinks are a convenient method of linking
related text documents. We can now do the same for video
sequences. Moreover, our object-based hyperlinking can
automatically be done in a meaningful manner. To achieve
this, we simply link together two objects whenever their
appearances are similar enough for them to be classified in
the same class of the object hierarchy. The actual links are
implemented in the XML representation of the video se-
quence, and the user is shown icons corresponding to pos-
sible links in a sidebar as the video plays. A micon may

Figure 7: Proposed interface for video-object hyperlinking
and virtual annotation. When a video object appears, the
corresponding annotation appears below it, and possible
hyperlinks are highlighted in the sidebar on the right.

be associated with each link. The hierarchical organisation
of objects can also be used for automatically annotating
video. By storing a small textual message, description or
interesting fact at each level of the object hierarchy, video
objects can be automatically tagged with relevant informa-
tion. Our proposed interface for video hyperlinking and
annotation display is shown in Fig. 7.

4.3 Semantic Transcoding
We propose semantic transcoding as a means of band-

width conservation, deriving from our ability to classify
video objects. First, we arrange for a small, pre-built ob-
ject hierarchy (consisting of representative objects) to be
present at the user-end as part of the video-search software.
Then, while processing a video sequence at the server end,
constituent video objects are classified by traversing the
complete object hierarchy. Now, instead of transmitting
the entire appearance space for each object, the server only
sends a class identifier to the client end. The client soft-
ware matches this identifier against its pre-built hierarchy
and inserts a representative object from the object-class to
which the identifier corresponds. For example, all cars in a
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Figure 6: (a to e) Five selected frames of the vehicle sequence in which a Maruti van is followed by a scooter. (f to j)
Content-authored video frames, after inserting 3 ‘virtual’ cars between the original two vehicles. By manipulating the affine
parameters and introducing the ‘virtual’ cars, the authored video seems to show a procession of cars.

video may be replaced by a prototype Maruti/Ambassador
car, which is present in the pre-built hierarchy. Thus, the
user still gets a general idea of the video content, though
with a slight loss in detail.

Semantic transcoding, along with miconic representa-
tion, helps produce tremendous compression. For the un-
compressed 80-frame, 16MB vehicle video of Fig. 6 our
basic XML representation (of the complete video) is 4.2
MB in size. The 6-frame micon has a 0.9 MB XML rep-
resentation. Finally, the size of the miconic representation
with semantic transcoding of the car object-class is 300
KB — essentially the size of just one video-frame.

5 Conclusions
The key contributions of this paper are two-fold: the

proposal of a completely automated scheme for object ex-
traction for a certain class of videos, and the proposal of
a new object-based representation allowing for enhanced
content-based functionalities. The detailed description of
object tracking and hierarchical category based object rep-
resentation scheme using appearance spaces has been pro-
vided in [5]. Our representation scheme has allowed us to
implement features such as video-object hyperlinking and
semantic compression, which have not been done previ-
ously. Thus, our environment allows for seamless interac-
tion of the user with visual media.

Ongoing work involves extension of the extraction
scheme to handle scenes shot with a moving camera.
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