
Geometry Based Connectivity Compression of Triangular Meshes

S.Nachiappan Sanjiv Kapoor Prem Kalra
Illinois Institute of Technology Dept. CSE, IIT-Delhi and Illinois Dept. CSE, IIT-Delhi

USA Institute of Technology, USA
sundnac@iit.edu kapoor@iit.edu pkalra@cse.iitd.ac.in

Abstract

Many interactive 3D graphics applications like manufac-
turing, design, networked-gaming, need to access 3D data
remotely. Transfer of large data sets consumes lot of band-
width and space. In this paper we describe a lossless
scheme for compressing 3D-surface data, represented by
triangular meshes. We present a new algorithm which ex-
ploits geometry (vertex) information for encoding connec-
tivity. The experimental results obtained are better than
Edgebreaker, the existing best method.

1. Introduction

Triangular meshes are widely used in exchanging 3D data.
A triangular mesh represents a 3D surface, approximated
using triangles. The mesh has vertex data, i.e. the co-
ordinates of the mesh vertices and connectivity data, i.e.
how the vertices are connected to form triangles. For
most meshes in practice the number of triangles is roughly
twice the number of vertices. If vertex data is in floating-
point co-ordinates and if triangles represented by their three
vertex-ids (integers), the volume of connectivity data ex-
ceeds the volume of vertex-data. Vertex-data is also known
as Geometry-data. Geometry compression methods in prac-
tice, compress vertex data down to one tenth of connectivity
data. Pointers and references to geometry compression can
be found in Rossignac [7]. Here, we focus on connectivity
compression.

In this paper we present a novel approach for lossless
encoding scheme for compressing connectivity data of tri-
angular meshes: geometry based connectivity compression
(Gbcc). First we overview basic terminology and prior work
on connectivity compression, following which we describe
the basic idea of our approach. Subsequently we present
our algorithm. Finally we discuss the results.

2. Basic Terminology

Let � be the vertex set and � be the triangle set of the mesh.
If an edge � is one of the edges of a triangle �, then � is said

to be incident on � and vice versa. If a vertex � is incident
on an edge �, then � is said be incident on � and vice versa.

Two triangles are adjacent if they share an edge. A dual
graph�� of the mesh is defined as follows. For each trian-
gle in the mesh, there is a vertex in�� . Two vertices in��
have an edge between them, if and only if the corresponding
triangles in the mesh are adjacent, i.e., they share an edge.

A depth-first traversal of �� generates a dfs-tree, called
as the triangle spanning tree or simply spanning tree, since
it corresponds to a spanning of the triangles in the input
mesh. This tree does not specify connectivity tree fully,
since such a tree might correspond to more than one mesh.
The dfs-tree induces an ancestor-descendent relation be-
tween triangles. Note the distinction between neighbours of
a triangle and children of triangle. Two triangles are neigh-
bours iff they share an edge, irrespective of how the mesh is
traversed, whereas parent-child relation is imposed by the
dfs-traversal.

The ratio of the size of connectivity encoding to the num-
ber of triangles, is known as the connectivity cost. It is usu-
ally measured in bits-per-triangle, abbreviated as bpt.

3. Prior Art
A raw representation of connectivity, costs � ��	��� � bits
per triangle, if a triangle is specified by its three vertex-ids.
For practical meshes, the cost can be as large as 40-50 bits
per triangle

Turan [10] observed that since planar graphs can be de-
composed into two spanning trees, they could be encoded
in constant number of bits per vertex. He gives an en-
coding that uses �� bits per vertex. Taubin and Rossignac
[9] describe the Topological surgery method, which en-
codes a vertex-spanning-tree and a triangle-spanning-tree
and achieve a connectivity cost of around � bpt. Isen-
burg and Snoeyink’s [4] mesh-collapse compression en-
codes mesh connectivity by a series of invertible edge col-
lapse operations. Entropy coding of this sequence results
in bit rates in the range of �
� to �
� bpt. Isenburg [3] pro-
poses an edge-based algorithm, achieving �
� to �
� bpt.
Gumhold and Strasser [2] describe a fast compression and
decompression scheme, with �
� to �
	 bpt.

Rossignac [7] proposes EdgeBreaker scheme, which re-
quires atmost � bpt. Rossignac and King [5] improve this
bound to atmost �
�� bpt, the best known bound till now
and which lies within 13% of the theoretical lower bound
due to Tutte [11].

Bajaj [1] decomposes into layers of triangles and com-
presses data locally within each layer using geometric prim-
itives, resulting in a connectivity cost of � to �
	 bpt.

A preliminary investigation on using geometry for 2D
meshes was done in [6]. The algorithm we present here is
inspired by that work.

4. Basic Idea of Our Approach

Most compression algorithms treat connectivity and vertex-
data separately, though there is often a strong corrleation
between them, implying that more compression is possible
if the correlation is exploited. Consider figure 1. Let us rea-
son inductively. Suppose that triangle � has been encoded.
Triangle � has just been encoded and we have to encode
triangle �. By induction, suppose that the decoder knows
the vertex-data and connectivity of triangles � and�. In or-
der that the decoder be able to decode� correctly, we need
tell the co-ordinates of vertex and also if the triangle �
will become the right child or the left child of triangle �.
In this case, triangle � is the left child of �. Consider the
point � on the median of triangle �. The medial bisection
plane or in short mbp of triangle � is that plane which is
perpendicular to the plane of � and containing its median
(which is drawn from the midpoint of the entering edge to
the opposite vertex). In the figure shown, � is the midpoint,
�� is the entering edge and � is the opposite vertex. � lies
on the left of the mbp of � and triangle � is the left-child
of �.

Note that we can always find a point � on the median of
a child triangle, with the property that if the child-triangle
is the left-child or right child of its parent, then the point �
lies to the left or right of the mbp of its parent, respectively.
Let us call this the placement property and point � as the
control-point. Vertex is also known as the third vertex
of triangle �, as two of its vertices � and � are already
known. Every triangle will have its own control-point and
third-vertex.

Define � to be the ratio ��
 � in figure 1. Every tri-
angle might have its own � depending on its relative size and
orientation. Since the point � lies on one of the sides of the
mbp, the length of �� is limited and this places an upper
limit on the value of �. The value of � for each triangle is
dependent on how the mesh is traversed, since � is charac-
teristic of the relative orientation and size of the parent and
child triangles.

Any point � � on the median line �, such that � �� �

�� also satisfies the placement property. In other words

Medial bisection plane

K − MidPt of PQ
L − MidPt of QR
QR − Entering edge for PQR
PQ − Entering edge for PQS
PQR and PQS are in different planes

KC : CS = ε

B

A

T

L

C

P

K

Q

U

R

S

Figure 1: Triangle Encoding

A

B D

E

C

Figure 2: Closing case

any ��, smaller than � is also acceptable, in the sense that
the point � � it defines satisfies the placement property. For
every triangle, we compute that largest possible �. Then we
pick the smallest among them to be a global � value, which
will work for all triangles. Thus the space required to store �
is constant. We make a trial run over the mesh and compute
the global � value and pass it to the decoder as header data.
Then we traverse the mesh once more, to compute control-
points for all triangles. We tell the decoder, the control-
point for the triangles in the mesh.

Referring to figure 1, knowing � and the control-point,
the decoder can reconstruct the co-ordinates of , since by
induction it knows the co-ordinates of the vertices triangles
� and � . Also by the placement property, it can also deter-
mine if triangle � is the left or right child of triangle � and
hence the connectivity for triangle �. Hence by specify-
ing the point�, we can reconstruct both vertex-co-ordinates
and connectivity.

5. Closing Triangles
While making the dfs-traversal of the mesh, whenever we
mark all the vertices of a triangle as soon as it gets visited.
For each triangle we need to encode its third-vertex and its
placement w.r.t to its parent. While encoding a triangle if its
third-vertex is not yet seen, we compute a control-point for
the triangle, so that its placement and its third-vertex can be
reconstructed.

Consider figure 2. We enter triangles ���, ���,
��� in the order shown by the arrows. When entering
triangle ���, we find that its third-vertex � is already
marked, since triangle ��� was already visited. We can
compute a control-point for triangle���, but that requires
specifying floating-point numbers. It turns out that we can
encode the triangle ��� in � bits. Observe that the adja-
cency list of vertex � has both the vertices � and � in it.
By maintaining adjacency lists for all vertices in such way
that every adjacency list defines a single fan, we can guar-
antee that vertex � and � will be at the extremities of the
adjacency list of �, as they are the extreme vertices in the
fan of vertex �.

Vertex � is also known as the common vertex of trian-
gle ���, since it is common to ��� �� previously visited
neighbours��� and ���. To decode triangle ���, the
decoder scans the adjacency list of the common-vertex �,
starting from the where vertex � occurs. At the end of the
scan, vertex�must occur. All the decoder needs to know is
what is the common vertex. Note that the common vertex is
one of the three vertices of the ���, the parent of triangle
���. Thus we need 2 bits to specify the common vertex.

Triangle ��� is also known as a closing triangle, since
visiting it, is equivalent tracing a cycle in the dual graph.
For a closing triangle, its third-vertex is seen as marked
when the traversal enters it. If the third-vertex is not
marked, then it is called a proper triangle. Control points
are computed only for proper triangles.

6. Encoder and Decoder
The Encoder, makes trial run to compute a global �. In the
next traversal, it classifies triangles as closing and proper
triangles. It computes control-points for proper triangles
and common-vertex for closing triangles. For each triangle
it assigns a label (explained later), based on how many chil-
dren a triangle has and what is the common-vertex if it is a
closing triangle. The labels are output by some well-defined
traversal of the triangle-spanning tree.

The decoder receives the labels and control points, re-
constructs the same spanning tree which the encoder had
computed.

7. Error Control
In the decoder, the reconstruction of a vertex from control-
point and � involves a division by �. With highly skewed tri-
angle orientations and sizes, � can be as low as ����. Hence
a small numerical error is magnified. Besides, the decoder
reconstructs new vertices based on previously reconstructed
vertices. Hence error of reconstruction in previous compu-
tations propagates to subsequent computations. A series of
ten computations can result in an unacceptable accumula-
tion of error.

P

Encoder Decoder

A

B

C

B’

A’

Figure 3: Error Control

Figure 4: Triangle Labelling

Consider figure 3. The encoder computes the control-
point � from using vertices �,� and �. But the decoder
reconstructs � from �� and ��, which are the decoder’s
version of vertices� and�. This is precisely the reason for
error propagation. Hence let the encoder compute � using
�� and �� instead of � and �. Using simple error analysis,
we can show that error will not propagate if encoder does
so. The error will be there and can be bounded in terms of
the arithmetic-precision used, but it will not propagate. To
know �� and ��, the encoder runs a mini-decoder inside it.

8. Triangle Labelling

A proper triangle is a branch or a � triangle if it has two
children in the spanning tree; a Unichild or a � triangle if it
has one child; a leaf or a � triangle if it has no children.

A closing triangle is labelled an � triangle, if its com-
mon vertex is the third-vertex of its parent; a � triangle if
its common vertex is either the first or the second vertex of
its parent. Though a � label encodes two cases, it can be
uniquely decoded based on context.

Thus, the label, a triangle can receive is one of
�������� � . If it is a closing-triangle with no child then
it receives an additional label - , see figure 4.

9. DFS Constraints
We observe some constraints/properties for DFS traversal,
which restrict the labels a triangle receives, depending on
what the label of the parent was.

For example, suppose a � triangle � has an unvisited
neighbour �, such that if � was entered from �, � would
become a closing triangle. We claim that � can ignore it,
considering that there exists another triangle � � which will
take up � as its child. The argument of the claim is as fol-
lows. Since � would become a closing triangle if entered
from �, it must have had another of its neighbours visited.
Let this be triangle ��. When �� was entered � was unvisited.
Since �� did not visit � it must have marked it for later ex-
ploration, thus � could ignore �. This also implies that i)
a � triangle cannot have a closing triangle as its child and
ii) a closing triangle is either the second child of a branch
triangle, or child of another closing triangle.

These constraints reduce the possible set of labels the
children of a triangle � might receive, given that � receives
the label ��. Thus the uncertainty about the label of children
is reduced. This would imply reduction in the uncertainty
of label-assignment - hence the entropy of the connectivity
string goes down resulting into better compressibility.

10. Bad Closings
Earlier we saw that a closing triangle occurs, when its third
vertex is already marked by the time the dfs-traversal vis-
its it. In order that the decoder can reconstruct we need to
tell the common-vertex of the closing. The precondition for
encoding a closing triangle is that, two of its neighbours
must have been previously visited, so that we can define a
common-vertex for it. It is possible that when the traver-
sal enters a closing triangle, only one of its neighbours is
visited. In that case we ignore that triangle, claiming that
it will be visited again along some other path. The ignored
triangles are called bad closings.

For a mesh with atmost one boundary, bad closings can-
not exist at the end of the traversal. A bad closing triangle
has exactly one of its neighbours visited, by definition. Any
other neighbour is unvisited. Hence every other neighbour
of bad closing is another bad closing or an unvisited trian-
gle. Thus bad closings and unvisited triangles must form
chains, if they exist. These chains are closed or they termi-
nate at a boundary. In other words, the bad closings frag-
ment a mesh into several pieces, as shown in figure 5

A bad closing has all its vertices marked. Note that at-
most two vertices a bad closing can border a fragment. The
third vertex is either inside the chain or borders another
fragment. To enter one fragment from another fragment the
traversal must cross the bad closings. But since bad clos-
ings are not visited, we cannot move from any fragment to
any other fragment. This implies that not all three vertices

Fragment-1

Fragment-2

Fragment-3

Network

Start DFS

The Mesh

Boundary

Figure 5: Fragmentation

Bad closing chain

Hole

Figure 6: Mesh with a Hole

of a bad closing could have been marked, yielding a con-
tradiction. Hence bad closings cannot occur in a mesh with
atmost one boundary.

11. Holes

The earlier argument that bad closings do not exist at the
end of the traversal of a mesh with atmost one boundary,
was based on the fact that, the bad closing and unvisited
triangles form a network which fragments the mesh into
different components. If there is more than one connected
component, then we could not have reached one component
from another at all. Since a bad-closing can have atmost
two of its vertices bordering a component, it is impossible
that its remaining vertex was visited (the remaining vertex
belongs to a different component or is embedded in the net-
work).

If there are holes, then bad-closings need not necessarily
fragment the mesh in to different components, as shown in
figure 6. Note that there is a hole and also the chain of bad-
closing triangles (shown unshaded). The mesh is still in one
piece.

To deal with holes, whenever we encounter a bad clos-
ing triangle, we record it. Also when some triangle ignores

some other triangle in the traversal, we have to see of the
ignored triangle can become a potential bad closing and
if so we have to record that ignored triangle also. Once
the traversal is complete, we have a record of bad clos-
ing triangles. Some of these might have been marked as
bad-closings, but became good-closings because they were
reached by other path. Hence there is no need to consider
such triangles. We need to consider only those triangles in
the record, which are still unvisited.

We select some arbitrary triangle from the record. It will
belong to some chain. We explicitly record its vertex ids
and pass it to the decoder. Thus some triangle is forcibly
visited.

It can be proved that for every chain of bad closing tri-
angles, if one triangle in the chain gets visited, then every
other triangle in the chain will subsequently become a good
closing triangle. Hence all other triangles in the chain can
be visited. The additional cost per chain is found to be
� � ��	��� �, where � is rather small.

12. Results

In our case, the source has memory i.e., the next-label emit-
ted depends on the previous label. We have fitted an order-1
model on our source. We have to transmit the probability
distribution for this model as header-data to the decoder. In
general it can be shown that in an order-k+1 model, the
uncertainty as to what is the next label, is atmost that of
an order-� model, as indicated by Shannon [8]. But the
penalty is that the space required for transmitting order-k
model statistics, for a source-alphabet size �, is ������.
It might turn out that reduction in uncertainty of the source
obtained by an order-k model is offset by the overhead in-
curred in transmitting the statistics. Besides the analysis
of traversal strategy reveals a strong presence of order-1
dependency and no more. Hence we use ordei-1 statistics
only.

As the mesh is also part of the source, if the mesh has
a regular structure, then the next-symbol might depend on
many previous symbols. But the order-1 model we use, may
not capture this dependency. Higher-order models can do
so, but these are costly. One good solution is to learn the
model dynamically - this is what the LZ-family of algo-
rithms do. These algorithms will compress their input well,
only if there are repitions of long substrings. They will per-
form poorly if the higher-order dependencies are weak. In
that case our order-1 model will suffice.

So, we run gzip, an unix-implementation of the LZ-
family and also we run our order-1 encoder and pick the
best. We can tell the decoder what we picked, as part of the
header-data. Some results are shown in figure 7 and in table
1. The second and third columns in the table indicate the
number of vertices and triangles in the mesh, respectively.

Vertices 2912
Triangles 5801

Edgebreaker (bpt): 1.88
Gbcc (bpt): 1.29

Vertices 83047
Triangles 166089

Edgebreaker (bpt): 1.90
Gbcc (bpt): 0.661

Figure 7: Results

Input-Mesh ��� ��� Gbcc(E1) Edgebreaker
Golfstick 263 521 1.47 1.7

Mannequin 690 1375 1.47 1.7
HumanFace 989 1,97 1.48 1.7

Terrain 40,001 79,997 0.069 1.5

Table 1: Results

Column 	 gives the connectivity cost in bits-per-triangle
for edgebreaker. Column � gives the order-1 entropy E1 of
the connectivity string output by our algorithm (Gbcc).

The version of edgebreaker code available, could deal
only with meshes without any hole. So, meshes with holes
had to be converted into hole-less meshes by putting in one
additional vertex per hole and triangulating the hole. The
experiments then were performed on meshes for which the
holes had been removed. We can use arithmetic coding to
reach the entropy-limit and hence get a bits-per-triangle rate
which is almost close to the entropy.

The Terrain mesh mentioned in table 1 has a recursive
substructure. Hence the entropy is remarkably low. Other
meshes do not have a significant regularity and hence the
entropy is higher.

13. Conclusion
A new algorithm which encodes connectivity based upon
geometry is presented. The approach is novel. The em-
pirical results are better than the existing best algorithm –
Edgebreaker. More observations have been made about the
algorithm which the authors believe can provide a theoreti-
cal bound atmost �
�� bits per triangle. Further possibilites
are being researched. More efficient techniques for dealing
with holes are being analyzed.

The theoretical worst case of connectivity cost for hole-
less meshes is �
�� bits-per-triangle as of now. But observed
entropies are much lower compared to �
��. There are lot
of constraints that have not been taken into account in com-
puting the �
�� figure. For instance, the number of branch
triangle is exactly !� !� � �, where !� and !� are
the number of labels and � triangles respectively. Also
the number of proper triangles is �� � � � and the number of
closing triangles is �� � � �� � �. Besides Euler’s relation
implies that �� � � ��� �. All these constraints when applied
might bring down the worst case connectivity cost.

14. Acknowledgments
The authors would like to extend thanks to Dinesh Shikhare
of NCST, India and Prof. Jarek Rossignac and his group
of Georgia Institute of Technology for providing the source
code of Edgebreaker algorithm and related data converters.

References

[1] C. L. Bajaj, V. Pasccuci and G. Zhuang. Single resolu-
tion compression of arbitrary triangular meshes with proper-
ties. In Proceedings of Data Compression Conference, pages
247–256, 1999.

[2] S. GumHold and W. Strasser. Real time compression of
triangle mesh connectivity. In Computer Graphics (SIG-
GRAPH ’98 Proceedings), pages 133–140, 1998.

[3] M. Isenburg. Triangle fixer : Edge-based connectivity com-
pression. Technical Report TR-99-38, University of North
Carolina at Chapel Hill, 1999.

[4] M. Isenburg and J.Snoeyink. Mesh collapse compression. In
Proceedings of SIBGRAPI’99 - 12th Brazilian Symposium
on Computer Graphics and Image Processing, pages 27–28,
1999.

[5] D. King and J. Rossignac. Guaranteed 3.67 bit encoding of
planar triangular graphs. In 11th Canadian conference on
computational geometry, pages 146–149, August 1999.

[6] Sanjiv Karoor, Prem Kalra, Gaurav Rastogi and Vivek Jawa.
Connectivity compression of triangular meshes. Technical
report, Department of Computer Science, Indian Institute of
Technology, New Delhi, India, June 2000.

[7] J. Rossignac. Connectivity compression of triangle meshes.
IEEE Transactions on Visualization and Computer Graph-
ics, 5(1), January-March 1999.

[8] C. E. Shannon. A mathematical theory of communication.
Bell System Technical Journal, 27:379–423 and 623–656,
July and October 1948.

[9] G. Taubin and J. Rossignac. Geometric compression
through topological surgery. ACM Transactions on Graph-
ics, 17(2):84–115, 1998.

[10] G. Turan. Succinct representations of graphs. Discrete Ap-
plied Math, 8:289–294, 1984.

[11] W. Tutte. A census of planar triangulations. Canadian Jour-
nal of Mathematics, 14:21–38, 1962.

	Back

