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Abstract

We present a simple and intuitive method for interactive 3D
reconstruction and camera calibration from a single image
of a structured scene. The method is based on manual regis-
tration of two world planes. We present experimental results
on some test images.

1. Introduction
Recently the problem of interactive 3D reconstruction from
a single view of a scene has attracted considerable atten-
tion [2, 5, 3, 6, 8, 7, 1, 9]. Such a reconstruction, without
any knowledge of camera parameters, may find wide use
in a variety of geometric modeling applications. 3D recon-
struction from a single image must necessarily be through
an interactive process, where the user provides information
and constraints about the scene structure. Such information
may be in terms of vanishing points or lines [5, 1, 6, 7], co-
planarity [8], spatial inter-relationship of features [2, 3] and
camera constraints [9].

In this paper we assume the customary pin-hole camera
model [4] and present a method for 3D reconstruction from
a single image based on the registration of two planes. The
method is simple and intuitive and is applicable for struc-
tured scenes. The method is based on computation of ho-
mographies [4] from two world planes to the image, which
can be accomplished more easily and reliably than comput-
ing vanishing points and lines. The user needs to identify
the two planes by clicking a rectangle on each.

We show that the interactive registration of two planes
facilitate 3D reconstruction of structured scenes using sim-
ple similar triangles and that it is also possible to recover the
camera position and the internal parameters of the camera.
We deal with cases when (i) the two planes are orthogonal
and theX axis of the two planes are parallel to each other,
(ii) the two planes are orthogonal and but the coordinate
system of one plane is rotated with respect to the other, and
(iii) the two planes are not orthogonal.

The organization of the rest of the paper is as follows. In
Section 2 we present the basic method of camera calibration
and 3D reconstruction from two planes. In Section 3 we
work out some extensions of the basic method to make it
practically applicable. In Section 4 we present some results
and finally, in Section 5, we conclude the paper.

2. The basic case
Consider first the situation of Figure 1 where the two world
planes are orthogonal and their common axis of intersection
is visible in the image. Let the world coordinate system
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Figure 1: The basic case

of the X-Y (vertical) andX-Z (horizontal) planes be as
indicated in the figure. It is not necessary that three axes
are of same scale. LetH andG be the homographies from
the worldX-Z andX-Y planes to the image respectively.
These homographies may be computed by hand-picking the
six defining points in the image in a standard way [4].

In what follows we establish two crucial properties ofH
andG:

1. The third column of both the homographies are equal
(up to scale): The last column of both the homo-



graphies is the image of the(0, 0) point for both the
planes. Now, since the(0, 0, 0) point in the world has
coordinates(0, 0) in both theX-Y andX-Z planes,
both the homographies will map it to the image of the
world coordinate system’s origin. Hence, both the ho-
mographies have their last column equal (up to scale).
Since homographies are themselves defined only up to
a scale, the last columns can be taken to be the same.
This will fix the relative scale between the two homo-
graphies.

2. The first column of both the homographies are equal
(again up to scale):The first columns of the homo-
graphies are the image of the point at infinity in the
X direction in the world. Also, if we fix the relative
scale of the homographies (by making the last columns
equal in the previous part) then since the unit length in
theX direction for both the homographies is the same,
the image of the (1,0) point for both the homographies
will be the same (i.e. the image of the (1,0,1) point in
the world). Hence the first columns would also have to
be equal (including scale being equal).

So to obtain consistent homographiesH andG we can
solve for both of the homographies together and decrease
the number of independent variables from 16 independent
variables (8 for each of the homographies) to just 11 inde-
pendent variables (8 for any one and only 3 for the other
since only the2nd column of the second is independent).
These 11 degrees of freedom are exactly those required to
define the full projection matrix (3× 4) for the camera [4].

2.1. Camera calibration
The 3 × 4 projection matrix of the camera can be
read out from the columns of the homographiesH =
[H(1),H(2),H(3)] and G = [G(1),G(2),G(3)]. The
projection matrixP for the camera is

P =
[
H(1) G(2) H(2) H(3)

]

This is because the last column of the projection matrix is
the projection of the world origin and the first three columns
of P are the vanishing points in the respective directions.
The vanishing points in the X direction are same for both
the homographies and the unit lengths are also equal. So the
relative scale of the 4 columns is also correct in the world
coordinate sytem that we had specified.

But, if we want to calibrate the camera (i.e. determine
the matrix of camera internals,K) we require to know the
relative scales of each of the axis of the world coordinate
system that we had initially specified. To get the projec-
tion matrix in a coordinate system with unit lengths of the

axis equal we can just multiply the initialP matrix with a
diagonal matrix as follows

Pnew = Pold ∗




α 0 0 0
0 β 0 0
0 0 γ 0
0 0 0 1


 (1)

where 1/α is the unit length in the X-direction, 1/β is the
unit length in the Y-direction and 1/γ is the unit length in
the Z direction.

The projection matrixP obtained above can be written
asK[R|t] where the3×3 matrixK is the matrix of camera
internals,R is the3× 3 rotation matrix from the world co-
ordinate system to the camera coordinate system and−Rtt
are the coordinates of the camera center [4]. Thus, the first
3× 3 of P is KR (call it P̃). ClearlyP̃ ∗ P̃t = KKt.

The camera internal matrix has a general form [4]

K =




αu s u0

0 αv v0

0 0 1


 (2)

SoKKt (call it X) will have the form

X = KKt =




α2
u + u2

0 + s2 αvs + u0v0 u0

αvs + u0v0 α2
v + v2

0 v0

u0 v0 1




(3)
from which we can directly obtain the values of the camera
internals. We first normalizeX and makeX33 equal to 1.
Now,

u0 = X31 , v0 = X32 ,αv = −
√

X22 − v2
0

s = (X21 − u0v0)/αv , αu =
√

X11 − s2 − u2
0

OnceK has been obtained,R and t can also be simply
obtained.R = K−1 ∗ P̃ whereP̃ is KR (the first3× 3 of
P). t = K−1 ∗Kt whereKt is the last column ofP.

2.2. Localization of the camera center
OnceR andt are computed as above, the camera center can
be computed as−Rtt.

The camera center can also be directly computed from
the homographiesH andG defined above in the following
way.

Clearly, T = G−1H is the homography which maps
from the X-Z plane to the X-Y plane as shown Figure 1.
Let the coordinates of the camera center in the world frame
be(Cx, Cy, Cz). It can easily be verified geometrically that
the homography that maps points on the X-Z plane to the
X-Y plane is

T = G−1H = λ



−Cz Cx 0

0 Cy 0
0 1 −Cz


 (4)



So we can now get the coordinates of the camera center.
First we normalize the homographyT by makingT32 = 1.
Then the camera center is

C = (Cx, Cy, Cz) = (T12, T22,−T11)

This process can be geometrically understood as just tak-
ing two pairs of corresponding points on the 2 planes and
shooting lines through each pair of points. The intersec-
tion these 2 lines is the camera center. The camera center’s
coordinates(Cx, Cy, Cz) will be obtained in the world co-
ordinate system. Here, the scales ofX, Y andZ need not
be identical.

2.3. Computing the 3D coordinates
Once the camera center coordinates have been determined,
the coordinates of 3D points in the scene can be computed
using simple geometry. The user clicks a point (call it the
head) and its projection on theX-Z plane (call it thefoot)
in the image, for example the head and the foot of a person
(see Figure 2). Now using the homographyH−1 (from the
image plane to theX-Z horizontal plane) we can project
the head and the foot of the point on the horizontal (X-Z
plane). Now we can use simple similar triangles to calculate
the height (Y coordinate) of the point.
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Figure 2: Determining the Height

The height can be computed ash = Camera height *FH
CH

Note that the height can also be obtained relative to the
height of another object (with its head and foot given) by
eliminating the camera height from the two similar triangle
equations. TheX andZ coordinates come out directly us-
ing the homographyH−1. Thus we can get all the 3 affine
coordinates of points in the scene coordinate system by sim-
ple geometry.

Of course, the above procedure can also be applied rel-
ative to theX-Y plane to compute the width of objects as
well.

Also, in case the foot of the object (on the ground plane)
cannot be seen clearly in the image (eg. when the object
is placed on a horizontal table), then one can first find out
the heighth of the table by clicking the head and foot of
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Figure 3: Planes orthogonal, butX axis not visible

any point on the table and then get the homography from
the image to the horizontal (table) plane by settingY = h
in the matrixP. Then again we can use a similar approach
as above just taking the projection of the head on the table
plane and clicking the foot on the table plane. Then we can
use similar triangles as before to calculate the height. In
this case the height of the camera center will obviously be
Cy − h (taken from the table).

3. Possible extensions
In what follows we consider various possible extensions of
the method.

3.1. The two planes are orthogonal but the
commonX axis is not visible

Consider the situation of Figure 3. Let us assume that the
world X axis is not visible but we have four Euclidean
points on each plane to define homographiesH′ andG′ be-
tween theX-Z andX-Y planes and the image respectively.
Let us assume theX dimension of the ground plane rect-
angle to be the unit length of the world. Let1/γ be theZ
dimension of the ground plane rectangle and1/α and1/β
be theX andY dimensions of the vertical plane rectangle.
Also let tx, ty andtz be the translations of the rectangles as
shown in Figure 3.

Clearly, the homographiesH′ andG′ are related to the
homographiesH andG defined before as follows:

H = H′ ∗



1 0 0
0 γ 0
0 0 1


 ∗




1 0 0
0 1 −tz
0 0 1




= H′ ∗



1 0 0
0 γ −γtz
0 0 1




G = G′ ∗



α 0 −αtx
0 β −βty
0 0 1




(5)



Now substituting from Equation 5 in to Equation 4 and re-
writing we have,

H′




1 0 0
0 γ −γtz
0 0 1


 =

λ ∗G′ ∗



α 0 −αtx
0 β −βty
0 0 1


 ∗



−Cz Cx 0

0 Cy 0
0 1 −Cz




(6)
Note that there are no hidden scales as we have written them
all explicitly. Let

H′ =
(

h1 h2 h3

)
, G′ =

(
g1 g2 g3

)

Expanding Equation 6 we obtain

(
h1 γh2 −h2γtz + h3

)
= λ (X1 X2 X3) (7)

where,

X1 =
( −g1αCz

)
X2 =

(
g1α(Cx − tx) + g2β(Cy − ty) + g3

)
X3 =

(
Cz(g1αtx + g2βty − g3)

)

Note that since the first columns of bothH′ andG′ is the
vanishing point in theX direction so they will be equal up
to scale. This has to be enforced during the computation of
H′ andG′. Now,

1. If one ofαtx, βty or γtz is known then the others can
be found out easily by comparing the entries of the
third column of Equation 7. We can also obtainλCz

from these 3 equations. Then by comparing the first
columns we can compute−λαCz. Now, from these
two values we can also figure out the value ofα.

2. Instead, ifα is known then the ratioλCz can be ob-
tained from the first column. Plugging it in to the third
column we have three equations in three unknowns
(tx, βty andγtz) and we can solve in general. It is
indeed not surprising that the knowledge ofα should
enable us to figure out translations/depths. The scaling
in the image of two parallel world vectors of the same
length (or known relative length) seperated in depth
indeed gives us information about the perspective
effect.

Once we have obtainedλCz, αtx, βty andγtz we can com-
pute the other unknowns as follows. Multiplying column 2
of both sides withCz and plugging in the values ofαtx, βty
andγtz we can solve forαCx, βCy andγCz. Note thatβ
andγ cannot be determined separately (unless given). They

can be set to 1 without loss of generality andty, tz, Cy and
Cz can computed up to scale. That is the scales between the
unit lengths of the X, Y, and Z axis is not known. Ifβ or γ
is known then we know the scale between the unit lengths
of the corresponding axis and so we get the lengths up to a
common scale.

Once these parameters are computed we can use Equa-
tion 5 to computeH andG. Since we have already com-
puted the camera center we can proceed as in Section 2 to
compute the camera internals and 3D coordinates.

3.2. Rotation of the coordinate system of the
horizontal plane

In addition to the situation in the previous section, consider
a rotation of the coordinate system of the horizontal plane
(about theY axis). To account for this rotation, the first
equation in Equation 5 will have to be changed to

H = H′ ∗



1 0 0
0 γ 1
0 0 1


 ∗




cos θ sin θ 0
− sin θ cos θ 0

0 0 1


 ∗




1 0 0
0 1 −tz
0 0 1




(8)
Now the left hand side of Equation 7 changes to

(
Y1 Y2 Y3

)

where,

Y1 =
(

cosθh1 − sinθγh2

)
Y2 =

(
sinθh1 + cosθγh2

)
Y3 =

( −h1γtzsinθ − h2γtzcosθ + h3

)

We know that the first column of the LHS matrix is a linear
combination of the first and second columns of the original
homography since it represents a point at infinity in theXZ
plane and so must lie on the line passing through the points
at infinity defined by the first and second columns of the
original homography.

If γ andα are known then by comparing the first columns
we can get the value of theγtanθ and so getθ. From the
first column itself we will also getλαCz. Now, if we know
α then we can getλCz which can be used when we compare
the third columns to get 3 equations and solve fortx, βty
andtz. Now we can compare the second column and use
the previous information to getCx, βCy andCz.

If γ and one ofαtx, βty or tz are known then we can first
compare the first columns and getθ as in the previous case.
Then using the third column we can get the others ofαtx,
βty and tz and also getλCz. Now, from this andλαCz

obtained from the first column we can getα also. Now



again as in the previous case we can compare the second
columns to getCx, βCy andCz.

If θ is known thenγ can also be calculated from the first
column. Now if we also knowα then we can also getλCz

from the first column itself. Using these we can get the
translations by comparing the third column and then pro-
ceed as before.

If all the parameters can be computed we can obtainH
andG and proceed as in Section 2.

3.3. Rotation of the coordinate system of the
vertical plane

This case is identical to that of the previous section. Either
of the vertical or the horizontal plane coordinate system can
be taken as the reference.

3.4. The two planes not orthogonal

This situation is depicted in Figure 4 which shows a cross-
section. Instead of theXY plane, measurements are now
made with respect to theXY ′ plane which makes an angle
φ with the vertical.G′ andG are now homographies from
theXY ′ plane to the image. SinceH′ andH, andG′ andG

φ

Y Y’

Z

Cy

A

P’

P

P’’
Y’Y

Cy’

Cz’ Cy’ Sin φ
Cz

Figure 4: Planes not orthogonal

are related by homography relationships on their respective
planes, all the analysis of the previous two sub-sections still
apply and proceeding as before we can compute the camera
center as(Cx, C ′y, C ′z) instead of(Cx, Cy, Cz). However,
for 3D reconstruction, we need to now click theheadand
footparallel to theXY ′ plane.

For 3D reconstruction when theheadandfoot are avail-
able in the standard way parallel to theXY plane, we need
to know φ. If φ is known then we can compute(Cy, Cz)
in the orthogonal coordinate system and subsequently com-
puteY using similar triangles as before.

S.No. Measured height Average Error (in %)
1st Edge 2nd Edge

1 16.2094 16.066 16.1377 0.860625
2 15.7446 15.8174 15.781 1.36875
3 15.7977 15.8479 15.8228 1.1075
4 15.6799 16.0096 15.84475 0.9703125
5 16.1058 16.2843 16.19505 1.2190625
6 15.9151 15.8073 15.8612 0.8675
7 16.1429 16.0521 16.0975 0.609375
8 15.8025 16.0452 15.92385 0.4759375
9 16.1466 16.0452 16.0959 0.599375
10 15.8957 15.7984 15.84705 0.9559375

Table 1: Experimental measurements of the height of the
small box

4 Results

We experimented with 10 images of a laboratory scene with
the method of Section 3.1. Two of these are shown in Fig-
ure 5. The height of the smaller box was measured from 10

Figure 5: Laboratory images

images independently (with different orientations of camera
and the box) and the results obtained are shown below. The
heights of both the end points of the box were measured and
the average value was taken. The errors in each measure-
ment is also shown in the following table. The true height
of the floppy disk box was 16.0 cm. The average error in
the calculation of the height was 0.9%. We obtain similar
accuracy in the computation of the height of the bigger In-
tel Motherboard box. The average error in the calculation
of the height was 0.89%

In Figure 6 we show two views of a VRML
model generated from the first image. See
http://www.cse.iitd.ernet.in/vglab/
demo/single-view/2plane for the VRML results.
TheK calculated for one of the laboratory images is shown
below.

K =




1029.8 0.1 324.4
0 −1033.6 245.4
0 0 1


 (9)

Another experiment was conducted with the image of Fig-
ure 7 taken from [1], in which the height of a person was



Figure 6: Novel views generated from a VRML model

measured from the image shown. Three trials were con-
ducted and the results are displayed below. The actual
height of the person was 180 cm and the reference height
for the height calculation was taken as shown. The average
error is 0.38%.

]

Figure 7: The hut image from [1]

5. Conclusion
We have presented a simple method for 3D reconstruction
and camera calibration from a single image. The method
is based on interactive registration of two world planes and
is an alternative to the method proposed in [1]. It is to be
noted that methods proposed in [1] regarding measurements

on parallel planes can be directly imported in to our frame-
work. Our experimental results demonstrate the applicabil-
ity and robustness of the method.
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