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Abstract

Automatic face analysis has to cope with pose and light-
ing variations. Especially pose variations are difficult to
tackle and many face analysis methods require the use of so-
phisticated normalization procedures. We propose a data-
driven face analysis approach that is not only capable of
extracting features relevant to a given face analysis task,
but is also robust with regard to face location changes and
scale variations. This is achieved by deploying convolu-
tional neural networks. We show that the use of multi-
scale feature extractors and whole-field feature map sum-
ming neurons allow to improve facial expression recogni-
tion results, especially with test sets that feature scale, re-
spectively, translation changes.

1 Introduction

Many automatic facial expression analysis approaches
presented in the literature need some kind of manual in-
tervention during training, such as the construction of face
models or during testing due to necessary initialization
procedures, such as the precise localization of facial fea-
tures, in order to perform reliably. Several data-driven face
analysis methods have been described in the literature and
comprise among others neural network-based approaches
and PCA-based methods. However, numerous data-driven
face analysis approaches need accurate face normalization
preprocessing stages. In this paper, we propose multi-
scale convolutional neural network (CNN)[4] based ap-
proaches. CNNs, as well as the similar neocognitrons [2],
are bio-inspired hierarchical multi-layered neural network
approaches that model to some degree characteristics of the
human visual cortex and encompass scale and translation
invariant feature detection layers. Convolutional neural net-
works have been successfully applied for character recog-
nition [5], object detection [5] and more specifically for the
task of face recognition [3].

2 Convolutional Neural Networks

Figure 1 shows the architecture of the convolutional neu-
ral networks we trained for the task of facial expression
recognition. Its layers alternate between convolution layers
with feature maps
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where ���32 # �547698;:��32 # is a sigmoidal activation function,! , respectively ' the biases, � and . the weights, � 
��� �
the < ’th input and �=, 
��� � the down-sampled < ’th input of
the neuron group > of layer ? . 0 is a matrix whose ele-
ments are all one and � denotes a 2-dimensional convolu-
tion. Note that upper case letters represent matrices, while
lower case letters denominate scalars. We obtained good re-
sults by choosing receptive fields sizes of @BAC@ pixels for
the groups of neurons in the first feature extraction layer
and D�@EAFD�@ pixels in the third feature extraction layer, re-
spectively GHAFG pixels for the receptive fields of the sub-
sampling layers. The learned weights of the convolutional
layers allow for problem-at-hand dependent feature extrac-
tion, whereas the sub-sampling layers increase the invari-
ance of the object of interest’s location dependence. Weight
sharing allows to significantly reduce the number of free
parameters, which in turn improves the generalization abil-
ity [4]. For example, the number of neuron interconnections
in the feature extraction layers of the network architecture
shown in Figure 1 is 3367308, while the number of weights
amounts only to 1902 and the number of neurons to 47787.
The number of neuron interconnections in the MLP is how-
ever 59826 with the same number of weights and a mere 6
neurons. This shows that even though the feature extraction
layers are huge with regard to the number of neuron inter-
connections, only a few weights need to be trained. Most
weights have to be adapted in the MLP connected to the
feature layers.
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Face images � 
�� at the input of the CNNs were not
pose-normalized, but only global lighting changes were ad-
dressed by removing the mean value � 
�� of the images con-
tained in the training base. In order to increase the learning
speed, we normalized also the variances of the input vari-
ables by dividing them by their standard deviation � 
�� of

the images of the training set: � ������� � �
	���
 ��	��� 	�� . No at-
tempts were taken to reduce image dimensionality by using
e.g. holistic PCA as demonstrated in [3]. Instead, we relied
on the kernels of the feature extraction layers to perform
decorrelation of the input data. Holistically applied PCA
without using sophisticated pose normalization procedures
would attempt to represent pose information, which is not
desired, as there are too many pose variations present in nat-
ural face images (due to translation, rotation and scale).

We distinguish three different convolutional layer (Con-
vLay) types: Simple feature extraction convolutional layers
(CoSi) that contain neuron groups, which operate on a sin-
gle input feature map and have as output also a single fea-
ture map. Secondly, simple weight-sharing convolutional
layers (CoSiSh) that contain groups of neurons, which oper-
ate like those of simple feature extraction layers, however,
share weights amongst themselves. We thus allow here not
only for weight sharing over space, but also over different
feature extractor groups. Thirdly, complex network layers
(CoCo) contain neuron groups with different weights per
input map, while featuring a single output map. Finally,
summer neuron layers (SuNe) sum up incoming signals into
a singular output value, see also Figure 2.

Using SuNe-type layers in combination with
convolution-based feature extraction layers (CoSi), we
obtain an increased invariance to translation. SubsLay-type
sub-sampling layers allow for a certain invariance to
shearing and local feature deformation, while CoCo-type
layers integrate small and simple features ( @�A @ ) into
complex features of a size ( D�@CA D�@ ). The latter corre-
spond, when taking preceding sub-sampling layers into
account, to about the facial area that is of interest for facial
action recognition. Finally, SuNe-type layers allows for
scale-invariant feature extraction, when combined with a
preceding multi-scale simple feature extraction layer with
receptive fields of different sizes, e.g. @ A1@ ,

� A �
and� A �

.

Training of our CNNs was achieved in a supervised
manner by using the standard back-propagation algorithm,
adapted for convolutional neural networks. The weight and
bias deltas for the feature extraction kernels in the convolu-
tional layers of simple type (CoSi) described in equation 1
are
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while the weight and bias deltas for the sub-sampling layers
(SubsLay) described in equation 2 are as follows
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where � �
 is the input image < , � , �
 a down-sampled ver-
sion of the input image < of the lower layer

�
, ! #
 is the

error delta coming from the higher layer



. � denotes a
2-dimensional convolution and A a component-vise matrix
multiplication. � is the number of connected input feature
maps of the current neuron group > , � 
 and 
 
 the number
or rows, respectively columns of the feature map < . ? � is the
learning rate and % � the moment rate.

The way error deltas ! 
 for the current layer and neuron
group < are computed depends on whether the upper layer
is a convolutional layer of type (CoSi,CoSiSh,CoCo)
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a sub-sampling layer (SubsLay)
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or the MLP
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Hereby, � 
 is the output map of the current layer,
< ��� ? � ! # in equation 7 corresponds to a ! inflated by zeroes
- the matrix ! is padded by surrounding zeroes, leading to a
total matrix size of ��*+� � . (	, � G.- � � $&<0/ # � G21 *�3 � ? (4, �
G5- � � $&<0/ # ��G # , where rfSize is the size of the receptive
fields or weights (here supposed to be square). Further-
more, � �	� D���� ��� #
 � # corresponds to the weight matrix <76 of
the higher layer



and 8 is the number of neuron groups

in the upper layer connected to the current feature map. Fi-
nally, !9� #
 in equation 8 represents the up-sampled delta
of the higher layer and ��# (	$ 
 �:% � �('� A . � �('� # in equation 9
the < ’th transformation of the delta vector times the weight
vector, of the first layer of the MLP classifier into matrix
form. Hereby, the operation ��# (	$ 
 � # stands for reshaping of
the < ’th input vector into matrix form.
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3 Experiments and Results

We tested our neural network architectures on two dif-
ferent database sets. Database set 1 consists of the JAFFE
facial expression database [6], which contains posed emo-
tional facial expression images of 10 Japanese female sub-
jects (6 different emotion and neutral face displays), see
Figure 3. The expressed emotions correspond to the
6 primary or basic emotions postulated by Ekman and
Friesen [1] and possess each a distinctive content together
with a unique facial expression. They seem to be uni-
versal across human ethnicities and cultures and comprise
happiness, sadness, fear, disgust, surprise and anger. The
grayscale images originally of size G @GFBACG9@HF pixels were
reduced in scale to FGIBAJFGI pixels in order to lower the in-
formation content that has to be learned by the networks.
We used a total of 140 images to train our neural networks
and 70 images for testing. The images were labeled into
F � D � �

emotion classes. We found that the employed
database is too small to allow for a good generalization with
regard to the recognition of individual expressions. Divid-
ing the database for example into 7 subjects for training
and 3 subjects for testing, yielded average correct recog-
nition results as low as 30%. Therefore, the same subjects
were used for both the train and test set. The facial ex-
pression images contained in the JAFFE database feature
some head pose variations with regard to scale, out-of-plane
and in-plane head rotations as well as shifts. In order to
demonstrate the capability of CNNs to cope with situations,
where head pose variations come into play, we artificially
increased the JAFFE database by shifting the images (up,
down, left, right), zooming in and out as well as rotating
the images both in clockwise and counter-clock wise direc-
tions, leading to a second test set of � A � � � @HFH� images
that were labeled in the same way as the fist test set of 70
images, i.e. images were tagged according to the prevalent
emotional display only. Note that only affine transforma-
tions were applied to the test images. See Figure 4 for a few
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examples of the database set 2.
Table 1 lists the facial expression recognition results ob-

tained on the afore mentioned database sets. Network 1-
3 are convolutional neural networks and network 2 and
3 employ multi-scale receptive fields. Network 4 is a 3-
layered Multi-layer Perceptron (MLP) for comparison with
the CNNs. Network 1 is similar in structure to the one
shown in Figure 1. Note that all convolutional networks
score better than the MLP with regard to translation invari-
ance. Network 2 and 3 score also better with regard to scale
invariance. Furthermore, it is also interesting to note that
the CNNs improved invariance to in-plane rotation. This is
probably due to the sub-sampling layers. All CNNs gave
slightly lower recognition results on test set 1, when com-
pared to the MLP. Test set 1 features only few pose vari-
ations and thus the full connectivity of the MLP might be
an advantage. Unfortunately, we cannot compare our facial
expression recognition results with the ones Lyons and Aka-
matsu [6] obtained on the same database, as they computed
facial expression similarities using semantic values stem-
ming from human ratings, resulting in a mixture of facial
expressions per analyzed face, while we used one category
per facial expression.

4 Conclusions

In this paper we focused on adjusting the architecture
of convolutional neural networks in order to allow for an

increased invariance with regard to translation and scale
changes without relying on huge databases for learning
affine transformations of human faces. We were able to im-
prove results with regard to scale and translation changes
by using multi-scale simple feature extractor layers in com-
bination with weight-sharing feature extraction layers, re-
spectively, translation independence was increased by using
summer layers in combination with convolutional features
extractors. The employed CNN architectures recognized fa-
cial expressions also in the presence of in-plane pose varia-
tions without requiring extensive pose normalization or fea-
ture tracking initialization procedures. The only assump-
tions we made was, that the input image is coarsely cen-
tered around a single face to be analyzed. Also, no face
segmentation is required with our approach. Further work
has to be done in order to improve network inherent in- and
out-of-plane rotation invariance.
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CNN Network Architectures Correct Recognition Correct Recognition
<layer type><receptive field sizes><classifier type> Set 1 (# train/test img.: 140/70) Set 2 (# train/test img.: 140/560)
(1) A12*5x5-B12*2x2-C12*15x15-B12*2x2-mlp2 80.0% T38.2% R45.0% S47.1%
(2) A12*5x5-12*7x7-12*9x9-B36*2x2-...
S4*15x15-4*15x15-4*15x15-B12*2x2-mlp2 72.9% T36.8% R42.1% S50.0%
(3) A1*1x1-1*5x5-1*9x9-...
S36*5x5-B36*3x2-C18*15x15-D18-mlp2 82.9% T49.6% R54.3% S59.3%
(4) MLP3 (100-20-6) 88.6% T25.0% R38.6% S36.4%
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