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Abstract

This paper describes a classification method for on-line
handwritten digits based on off-line image representations.
The goal is to use image-based features to improve classifier
accuracy for on-line handwritten input. In this paper we de-
scribe an initial framework that can be used to achieve this
goal. This framework for handwritten digit classification is
based on genetic programming (GP). Several issues in pre-
processing, transformation of data from on-line to off-line
domains and feature extraction are described. Results are
reported on the UNIPEN digit dataset.

1. Introduction
One of the fundamental aspects of handwritten character
recognition methodologies is the manner in which data is
collected. The data acquisition process can be on-line or
off-line. On-line handwritten data is collected using a digi-
tizer or an instrumented pen to capture the pen-tip position�����	��
���

as a function of time. Contrary to on-line, off-line
handwritten data is collected using a scanner resulting in
the generation of the signal as an image � ������
� . Both areas
of handwritten character recognition have been in existence
for more than three decades. Various surveys outline the
state of the art in each area [17] [1].

In this paper we present an implementation for on-line
handwritten digit recognition using hierarchical feature ex-
traction previously used in off-line handwritten digit recog-
nition [15]. The focus is to describe how a combination
of off-line features extracted from the on-line data and pre-
sented to GP [6] classifiers can provide good recognition
results. We demonstrate this by using hierarchical feature
extraction [9] and active digit recognition [15] to develop
classifiers for the on-line UNIPEN digit dataset.

There were two main considerations for the use of off-

line features in our implementation: a) Hierarchical feature
space has proved to be very effective for digit classification
and pairwise discrimination of confusing allographs [9] and
b) Genetic Programming based classification has helped
identify the important features for classifier development.
Specifically, GP has several advantages over classical fea-
ture selection techniques when used for off-line handwrit-
ten digit classification using hierarchical features [15, 16].
Our aim here is to demonstrate that these conjectures are
also true for on-line digit recognition. The approach we
take here is to transform the data from the on-line signal
domain to the off-line image domain and perform GP based
classification.

As shown in Figure 1 the pen-down stroke is isolated
in the UNIPEN data format as a first stage of preprocess-
ing. This stroke information is converted into a Postscript
image. We experimented with various parameters like re-
sampling rate, thickness for painting the pen-down stroke,
size of the image, etc. and used the most suitable repre-
sentation. This Postscript image is then converted into a
HIPS [8] image for simplified processing and hierarchical
feature extraction. Feature vectors are then input to the GP
system for classifier development.

This paper is organized in 5 sections. A discussion on
key issues in on-line digit classification is presented in the
next section. Section 3 outlines the GP based method for
off-line handwritten digit classification. Section 4 provides
a short introduction to classification using genetic program-
ming. Section 5 discusses the experiments and results.

2. Issues in On-Line Classification
Isolated-characters and word recognizers are the most ba-
sic type of classifiers currently used in handwriting recog-
nition. If the basic ink object under consideration is a single
character or gesture the classifier is considered a character
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Figure 1: Extracting off-line hierarchical features from on-
line data. As shown in the figure (a) on-line stroke signal
is re-sampled for uniformity and isolated in a single file.
(b) Postscript image generated from the isolated stroke. (c)
HIPS image after conversion from Postscript. (d) Feature
extraction stage dividing the input image into regions using
a quad tree.

classifier. Complex word or glyph (multi-character shapes
or fused characters) classifiers are often termed ‘recogniz-
ers’. All these flavors of data complexity are present in the
UNIPEN project dataset. The UNIPEN [5] project is an ef-
fort for benchmarking handwriting recognition systems. It
consists of Dataset(1a)- Isolated Digits to Dataset(8)- Free
Text and Full Characters. The scope of the current discus-
sion is the development of a digit classifier for the 1a set.

The factors that influence classification of characters in
a pen-based input system are geometric variations, stroke
formation speed and allographic variations pertaining to po-
sitioning of the character and sequencing of strokes during
inking. Plamondon et.al. [11] provide a more detailed dis-
cussion on each of these factors. Schomaker [13] notes the
importance of usability of character classification in context
to free-form text. The problems associated with achieving
high accuracy at the isolated character level have led to the
use of special symbols (e.g. Graffiti) in several commer-
cial implementations. The development of classifiers is at-
tempted using a variety of techniques ranging from struc-
tural and rule-based methods to statistical modeling. Rule-
based methods do not require a large amount of training
data and the number of features used to describe one class
may be different from those required for another class. Dis-
ambiguating features like the difference in the direction of
the stroke formation when writing the ‘-’ of a ‘2’ and the
lack of a ‘-’ in the lower portion of a ‘7’ can be treated
as rules to effectively assign class labels in pair-wise deci-
sions. The performance of rule-based methods is limited by
the capabilities of the designer to reliably devise the set of
rules. On the other hand, statistical approaches generally
require a large amount of data for training. Such classi-
fiers require a fixed number of features in multidimensional
feature space. The problem now is to define a separation
boundary between classes in this feature space. This often
leads to complex solution representations and intolerance
to noise and consequently large generalization errors. As a
result heavy emphasis is placed on the preprocessing stage
prior to classification in order to effectively reduce these

problems.
The motivation in this paper is to effectively blend the

simplicity and speed of rule-based methods and the gener-
alization power of statistical approaches in a unified frame-
work using off-line image representation and GP. The com-
bination of rule-based methods and learning is achieved us-
ing GP where solutions are evaluated using rules and new
solutions are generated using statistical learning [6]. The
conversion from on-line to off-line domain and the result-
ing advantages and disadvantages are discussed in the next
section.

3. Issues in Off-Line Classification

In the domain of off-line handwritten character recognition
there are two key strategies in current use. They can be
broadly grouped as ‘active’ and ‘passive’ character recog-
nition. Passive character recognizers use methods such as
those described by Favata [4] and Suen [14]. These clas-
sical methods employ a One Model Fits all [10] paradigm
since they assume all features to be equally important and
base the decision on the entire feature vector. Active meth-
ods on the other hand try to perform feature selection and
classification based on the nature (complexity) of the task
at hand. Hence, active classifiers generated (using GP) use
the multi-resolution feature space more optimally. Some
systems, like the adaptive resonance network, learn as they
perform [3] but lack feedback mechanisms to describe the
learning strategy. Active character recognition as described
by J.Park et.al. [9] [10] employs an active heuristic function
that adaptively determines the length of the feature vector
as well as the features themselves used to classify an input
pattern. A feedback mechanism (rules) to understand why
certain features are used by the classifier for a particular
digit can be derived from the GP classifier tree. In terms of

Figure 2: The preprocessing and feature extraction using a
Quad tree [9]. The first figure shows the handwritten digit
‘9’. The second figure shows the normalized image seg-
regated into 4 sub-images and the remaining figures show
further segregation to derive a gradually detailed represen-
tation in feature space. The fifth figure shows the critical
points after feature extraction.

GP classifier modeling strategies for handwritten character
recognition several techniques have been implemented [15].
The theory and trade-offs in using GP have been discussed



by Koza et.al [7]. The solution representation in our ap-
proach is less complex compared to previously described
methods. GP-trees generated as classifiers provide an in-
sight into which features were used more often than oth-
ers. In a hierarchical feature space these features can be
mapped back to the regions of the image from which they
were extracted. This in turn helps us analyze and interpret
the classification results more effectively compared to cur-
rently used techniques [15]. At the heart of our approach is
the feature extraction routine that divides the image into a
quad tree. Features are then extracted based on the contour
representation in the sub-image. Hierarchy is maintained by
dividing each sub-image into deeper quad trees in order to
increase the level of detail. For most datasets a depth of 4 is
sufficient. The features from all these levels are then placed
in a feature vector. This feature vector is then presented to
the GP classifier. The same technique can be adopted using
quin tree representation. This process of feature extraction
and pre-processing is shown in Figure 2.

4. Genetic Programming (GP) Classi-
fiers

GP has been used over the past couple of years in several
domains, primarily because of its ability to model problems
effectively. The way GP-trees are grown and evolved can
be observed by a simple example [2] given in Figure 3. GP
consists of representing solutions as programs that can be
evaluated. Consider a GP-tree representation of the func-
tion

����� � � ������ � 
shown in Figure 3. The internal nodes

are the operators ‘
�
’ and ‘*’ and the leaf nodes are x and��� �

. The problem at hand is easily represented using such
expression trees. Inputs to the problem are represented as
leaf nodes and are called terminals. Any operator used to
operate on terminals is called a function. Functions and ter-
minals together form a solution. Solutions are evaluated
by instantiating the terminals and evaluating the functions.
As solutions are represented with terminals and functions,
the data types and length of these entities can vary from
the simplest (e.g. integer) to more complex user defined
types ( e.g. Structures in C language ). Thus, solutions are
logically referred to as programs and the search is based
on genetic methods [6]. The search for the best solution
to solve a problem emulates the evolutionary process. An
initial population of solutions is randomly generated and
evaluated. Best individual solutions are selected for mat-
ing based on values obtained from fitness functions and
new solutions are created using genetic operators. Fitness
functions essentially evaluate a solution’s ability to solve
a problem. The new population is then evaluated and the
search for a better solution continues until an optimal solu-
tion is found or other user-defined termination criteria are
met. Keeping in view the above procedure to generate GP
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5                  0.400         0.080

6                  0.500         0.125

..                  ......             .......

10                0.900        0.405

Fitness Case      Input          Output −1

Fitness cases: input x and output y values.

Figure 3: Example showing modeling of a GP solution [2].
The inputs and expected outputs are given in the table
(bottom-left). A sample tree randomly initialized in the first
generation is shown (top). Search for the best equation to
represent the inputs and expected outputs leads to the solu-
tion tree representing function

����� � � 	��� 
.

solutions, we initialize a population of GP trees using a set
of functions which act as operators and a set of terminals
which are subsets of the feature vector. Each tree there-
fore is a Lisp S-expression consisting of operators as in-
ternal nodes and features as terminal nodes. Feature vec-
tors are computed from the training data and stored in a
flat file. Each GP tree expression is then evaluated against
each feature vector corresponding to a sample in the train-
ing data. The result of each evaluation is mapped to a real
value that expresses a detection level for the sample. A de-
tection level above +1 is positive and a level below -1 is
negative. Any value in between is considered uncertain.
Since there are 10 classes in the UNIPEN 1a digit set, we
train 10 detectors. Each detector is trained to recognize
one particular class of input. The detectors are then com-
bined in parallel to form an 11-class (0-9 and reject) clas-
sifier and are evaluated against the validation set. Depend-
ing on the performance on the validation set, individual de-
tectors undergo further training if required. The fitness of
each 


���
detector �� is computed based on the equation :� � �� �� ��� ��� ��� ��� �� ������� ��� ������ � � ��! ��� ��! �� � �#"

where,
� � = number of samples rejected due to output be-

ing between +1 and -1. � � = penalty for rejection.
�$���

=
number of training set samples not returning positive that
belong to the class of the detector. � � �

= penalty associated



with wrong classification of the sample.
� ! = number of

training set samples that returned a false positive and � ! =
penalty associated with false positive classification.

�
= the

criterion deciding minimum number of samples of class � �
that must be targeted by every solution in order to maintain
potency in the population. � " = penalty associated with not
meeting

�
. The value of

�
must be decided before we begin

the run and should usually fall in the range of 1-5% of the
number of samples belonging to class � � in the training set.
Typical values of penalty in each case can range between 1
and 5 in our implementation. The training proceeds in GP
generations until the required accuracy is achieved or the
number of allowed generations is exhausted.

5. Experiments and Results
We use the UNIPEN [5] Train-R01/V07 subset 1a dataset
consisting of 15,953 digits. Samples of some digits in this
dataset are shown in Figure 4. These are the Postscript
versions of the data converted from the UNIPEN format
to Postscript using the utilities available as part of the
UNIPEN Tools (http://unipen.nici.kun.nl/uptools3). As can
be seen, the representation leads to wedges in the image. It
has not been conclusively determined if such wedges affect
the recognition accuracy in our experiments.

Figure 4: Different samples randomly selected from the
UNIPEN 1a isolated digit set. These images are generated
using the UNIPEN to Postscript conversion utility.

These Postscript images are then converted to the
HIPS [8] format. There are several advantages to using
the HIPS format including unrestricted image size and se-
quence length and the stored images are self-documenting.
HIPS maintains a complete log of the file history within the
header file. Every image file contains a record of who owns
it, when it was created, the file format as well as a record
of all HIPS operations performed on it which aids the fea-
ture extraction routine for hierarchical feature extraction as
described by Park [9]. Features are extracted from these im-
ages by dividing each image into a quad tree with maximum
depth of 4. At each level 8 features based on gradient and
moment are computed. The total number of sub-images is� ��� � ��� � � � ���
	

thereby giving a feature vector of 680
features corresponding to each isolated digit in the dataset.

We decided to use 15,000 digits from the full set after
some preliminary cleaning. The cleaning criterion elimi-
nated erroneous data such as multi-digit entries or incom-
plete entries consisting of isolated strokes such as single

dashes or dots. From the 15,000 digits 10,000 were used
as training set, 2000 as validation set and 3000 as test set.
We experimented with different training set sizes. Present-
ing smaller training sets led to more complex GP classifiers
in terms of feature set size selected by GP. In retrospect, this
led to higher confusion when the best of generation GP so-
lution was evaluated on the validation set and we decided to
present GP with more training data to capture the important
variations more effectively in a more optimal feature sub-
set. The truth information was gathered by reading the truth
from the UNIPEN file.

Table 1: GP Parameters Used in Experiments.
Parameters Values
Objective: Evolve GP classifiers: 0-9

Terminal Set: Hierarchical features
Function set: +, -, *, DIV, SIN, COS, LOG, EXP

Population sizes used: 200, 400, 600
Crossover probability: 80%
Mutation probability: 20%

Selection: Tournament selection (Size 7)
Termination criterion: � �	�� �������

Maximum generations : 1000
Maximum depth: 17

Initialization Method: Half-and-Half
Overall accuracy: 89%

Solution complexity : High
Number of features selected by GP: 174 out of 279 total

The GP parameters used for these experiments are given
in Table 1. We experimented with variations in the function
set and population sizes and the optimal configuration of
parameters is tabulated. These parameters are decided prior
to training and remain consistent over the entire GP run.

Training consists of developing ten (0-9) single-digit de-
tectors. The output of each detector, D, is either (a) an af-
firmative

����� � � 
indication that the input has been posi-

tively identified as a class member, (b) a negative
������� � 

indication that the input is not a class member, or (c) an un-
certain

��� � � ����� � � � 
indication that the detector

was unable to make either a positive or negative determina-
tion.

Once all the single-digit detectors are trained, they are
combined into a higher-level 11-class (0-9, reject) classifier.
During test decode phase each input is presented to every
detector.

� If only one detector claims the input to be from its
class and if all the other detectors classify the input
as negative or uncertain and the truth value matches
the claim, accept the input as correctly classified.

� The input is classified wrong if two or more detectors
claim the input as their class or truth value differs from
any claims.

� The input is rejected if no detector provides an affir-
mative value.



Table 2: Results obtained on UNIPEN 1a digit set.
Class No.of Samples Correct Incorrect Reject Correct(%)

0 250 221 9 20 88.4
1 250 215 5 30 86.0
2 250 227 11 12 90.8
3 250 235 7 8 94.0
4 250 213 11 26 85.2
5 250 205 33 12 82.0
6 250 221 18 11 88.4
7 250 219 22 9 87.6
8 250 224 9 17 89.6
9 250 215 6 29 86.0

The best individual digit classification accuracy for a sin-
gle class was 94% for digit 3. Rejection rate for digit 3
was 3.2%. The lowest accuracy was 82% for digit 5. The
maximum inter-class confusion was for digits 4 and 9. The
overall accuracy on the test set was 87.8% while the over-
all error was 5.2%. Class-wise accuracy, error and rejection
results are given in Table 2.
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Figure 5: Plot showing fitness, error and accuracy over
number of generations of a GP run during training of digit 5
detector. The curves shown in this plot are representative of
most GP detectors where the fitness decreases sharply dur-
ing the initial runs and stabilizes over the number of gen-
erations with small decrements. Note that in standard GP
terminology lower fitness value represents better classifica-
tion.

Compared to other state of the art on-line handwritten
digit recognition technique the current recognition rates of
this system are low. Ratzlaff [12], has reported a better per-
formance using a simple scanning n-tuple classifier for the
same dataset. He has also provided a comparative analysis
of other competitive systems. Previously, GP based rec-
ognizers have been applied to the off-line handwritten digit
recognition task [16] and the performance on standard NIST
and USPS datasets is comparable to the state of the art in the
off-line domain [15]. The aim here was to propose an alter-
native framework for on-line recognition based on off-line

features and to present the issues faced in doing so. Efforts
are on currently to improve the classification accuracy of the
proposed system. The graph in Figure 5 shows the training
curve of the detector for digit ‘5’. The error in training and
fitness values are plotted. The initial search stabilizes after
250 generations, suggesting convergence.

6. Discussion
We described a new approach for isolated digit classifica-
tion of UNIPEN data.The different approaches under con-
sideration for future work are:
� Obtain the Fourier transform of the on-line signal and

use the co-efficients as input features for GP based
training.

� Use frame based features currently used for HMM
based recognition.

� Effective combinations of the above.

This paper describes the approach to transform the data
from on-line signal domain to off-line image domain and
perform the GP based training. The classifiers work in the
off-line image domain. Hierarchical feature extraction di-
rectly from original stroke vectors might prove a more ro-
bust approach. This will definitely reduce the dependence
on converting data to Postscript and HIPS image represen-
tation thereby decreasing the noise.

The main objective here was to explore the possibilities
of using off-line features to aid on-line recognition. GP was
the technique of choice since we were familiar with GP per-
formance in the off-line domain.
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