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Abstract

The objective of Content Based Image Retrieval (CBIR) sys-
tems is to retrieve images from large datasets based on
queries regarding their contents. This paper discusses the
problem of selecting features for handling generic queries
in Example-Based Image Retrieval, where the queries are
given in the form of positive and negative examples. No
assumptions are made regarding the nature of images or
queries. We investigate several linear time-complexity al-
gorithms which can be used for selecting features optimal
for a given query. We test three aspects of the algorithms:
their discrimination ability, robustness to sample set sizes
and behavior in real world test cases. The results indicate
that a hybrid approach may be called for.

1. Introduction

Example based query has become very popular in CBIR
systems because of its intuitive appeal and ease of use. In
this paradigm, the user query consists of examples of im-
ages he/she wants. The search engine then compares the
images in the database with these to see whether they are
apt or not. An extension to this method is to have posi-
tive as well as negative examples to aid in the search. A
basic implementation of such a CBIR algorithm has been
reported earlier in [3]. The present work is an extension of
the feature selection module reported there.

In order to keep the system versatile, no assumptions
are made regarding the nature of images and the types of
queries that may need to be addressed. This requires the
initial characterization of the images to be generic and re-
dundant. A very large number of low level features are
extracted from each image and kept in the database. The
features are based on color, texture (both scale and orienta-
tion), gradient field, histograms etc. No decorrelation of the
features is carried out. The number of features was 1076
in the first implementation and has increased even more as
shape, orientation and other features were added. The fea-
ture selection module deals with the problem of choosing
the subset of features appropriate for a given query. This in-

formation is then exploited by the search module to improve
both speed and performance.

In this work we investigate several putative algorithms
which can be used for feature selection. We discuss the fea-
ture selection problem in more detail before describing the
various algorithms evaluated. Section 3 describes the se-
lection methods evaluated. In Section 4 an evaluation pro-
cedure is outlined that assesses the selection methods using
artificial data. Finally, performance for real queries on a real
data set is reported and the results are analyzed.

2. Feature Selection Problem

The features selection module deals with the problem of
choosing appropriate features for a given query, where the
query is specified by positive and negative examples. Sev-
eral approaches have been proposed to perform feature se-
lection (see [1] for a brief survey). The most prominent of
these are: hand-crafted systems [2] (these are not suitable
for general example based queries); hierarchical systems
[6], [4], where a-priori processing is needed to structure the
database; self-organizing approaches [8], where the system
continuously adapts itself to examples; Gaussian Mixture
Model (GMM) based systems [5], where the class distribu-
tions are approximated using GMMs and then the discrimi-
native power of the features is determined using Kullback-
Leibler Divergence.

In the CBIR system in [3], where the feature selection
module is to be used, the requirements from the module are
as follows:
1. It must select a subset of features that provides the best
input for the image selection module. If too many features
are selected, the presence of irrelevant features will obscure
the ‘signal’ (reduce the signal to noise ratio (SNR) [7]). On
the other hand, taking too few features might impair the dis-
crimination.
2. It must reduce the overall computational complexity by
reducing the dimensionality of the classification problem.
3. Since we want the feature selection to take place at every
query (i.e. within the user loop), it must be efficient. As the
number of features is in the thousands, we require the mod-



ule to have linear time complexity with respect to number
of features.
4. As we are dealing with generic high level queries, the
module should not expect any a-priori organization of the
images in the database to increase its efficiency.
5. The image selection module in [3] is also constrained
to have linear time complexity w.r.t. number of features,
therefore the feature selector should assume only linear dis-
criminance based classifiers.
6. The module should be able to handle example sets of
sizes as small as 5.

As can be seen, [2], [6], [4] do not meet requirement
4, [8] is not designed for the large number of features in-
volved, and [5] cannot handle the small example set sizes
which are available. Our present work addresses the feature
selection problem in the context of the above mentioned re-
quirements.

One important fact to note at this point is the differ-
ence in character between the positive and negative exem-
plar sets. The positive set (�� samples) necessarily repre-
sents a cohesive set with respect to some attribute. If the
feature set is comprehensive enough, this attribute will be
captured by one or more features. With respect to these fea-
tures, the �� samples will most likely (but not necessarily)
have a unimodal distribution. On the other hand, the neg-
ative examples (�� samples) are unlikely to belong to any
well defined class. After a few iterations, this set consists of
various images mistakenly retrieved by the CBIR system.
Thus the �� samples may not have a unimodal distribution
for the features of interest. The classifier design issues aris-
ing from the presence of two sets (and the effect of their
non-Gaussian distributions) are discussed in [7].

3. Description of Algorithms Evalu-
ated

In this section we describe the algorithms evaluated. Here
onwards positive exemplars are referred to as ‘�� samples’
and negative examples are referred to as ‘�� samples’

The first step is to generate several algorithms which will
broadly cover the spectrum of possibilities. The desired
properties of a feature selection method are: (a) linear time
complexity with respect to number of features, i.e. it should
score each feature independently and then take the best set
of a predefined size; (b) low computational cost with respect
to number of images in database; (c) ability to handle fea-
tures with various types of distributions; and (d) robustness
to low sample set sizes (down to even 5). Seven different
methods were formulated and they can be divided into two
broad categories: Statistical, and Entropy based.

The statistical methods evaluated were: delta-mean,
inverse-sigma and membership-criterion. The Entropy
based methods evaluated were: entropy of �� samples, en-

tropy of both �� and �� samples, Kullback-Leibler distance
(asymmetric), and Kullback-Leibler distance (symmetric).

We now describe each of these algorithms in detail.
In all the formulae in this section ���� and ���� are means of
��� features of �� and �� samples respectively; ���� and ����
are variances of ��� features of �� and �� samples respec-
tively; ������ and ������ are the ��� features of ��� feature-
vectors belonging to �� and �� samples respectively; and
�� is the score of the ��� feature.

3.1. Statistical Methods

These are methods which evaluate the relevance of features
based on estimation of statistical parameters like mean and
standard deviation. While these quantities are well defined
for any distribution, their utility in characterizing distribu-
tions and estimating relevance of features depends on as-
sumptions about the nature of the distributions. This section
examines several such methods in detail.

Delta-Mean This is the only method used in the origi-
nal implementation [3] and forms the starting point of our
analysis. It measures the difference of means between the
�� and �� samples, normalized by the sum of their standard
deviations.

�� �
����� � �����

���� � ����
(1)

If the �� and �� clusters are well separated then the cor-
responding score is high, else it is low. The advantage of
this method is that it is guaranteed to select only good fea-
tures.The disadvantages are:(a) this scheme assumes that
both the distributions are unimodal, (b) it is sensitive to er-
rors in sigma(this occurs for very small ��’s and ��’s), and
(c) it may miss good features, if either distribution is non-
unimodal.

Since the �� distribution is most likely to violate the as-
sumption of unimodality, the next logical step is to focus
only on the �� distribution.

Inverse-Sigma Let us assume that only the �� distri-
bution is unimodal. One way of characterizing features is
to see how sharply the �� distribution is peaked. Since
the comparison is between distributions (assumed to be uni-
modal) of identical sample set sizes, this can be measured
by estimating the inverse of the standard deviation.

�� �
�

����
(2)

Here onwards this criterion is called InvSigma. The advan-
tage of InvSigma is that it does not assume �� distribution to
be clustered. InvSigma will fail if �� distribution is also not
unimodal. Of greater concern is the inability of InvSigma
to utilize the information in the �� set, which is a key user
feedback channel. The next method addresses this concern.

Membership Criterion This method restricts the as-
sumption of unimodality to the �� set only and uses the



mean and standard deviation computed on the � � samples.
However, these parameters are used in conjunction with the
�� samples to determine a fitness score. The idea behind
Membership is to see if the �� set parameters can be used to
effectively differentiate�� samples from �� samples. Mem-
bership to �� set is defined as having a value within a certain
distance (�	����) from the �� set mean, ����. The Member-
ship score then measures the fraction of ��+�� samples that
are correctly assigned/not assigned to the �� set.

The actual implementation was as follows:

let 
����� �
������� � �����

����
and 
����� �

������� � �����

����

�� do :
� � � �


����� increment ��� increment ���

����� increment ��� increment ���

�� �
��� � ���



(3)

where 
 = total number of vectors = ���� ���� ���� ���
We vary � and get the best score possible for each fea-

ture. In our implementation � is varied over �1, 1.5, 2, 2.5,
3, 3.5�

The advantage of Membership is that it does not make
any assumptions about the �� sample distribution and yet
takes its information into account. The disadvantage is that
the�� sample distribution is required to be unimodal. Prima
facie, this may seem like a non-issue for two reasons:(a) the
assumption that �� sample set is unimodal may seem rea-
sonable and (b) the constraint of linear discriminance may
appear to rule out exploitation of non-unimodal distribu-
tions. However, neither of these are true. The user picks ��

set as per some high level criteria which may not directly
map to any low level features. (The requirement of gen-
erality rules out extraction of specific high level features.)
Thus there is a significant probability of getting non-random
multi-modal distributions for the �� set. Moreover, the im-
age selection measure used in [3] is based on distances to in-
dividual exemplars. Thus that module is well constructed to
exploit multi-modal distributions along individual features.

3.2. Entropy based methods

Statistical characterization of distributions always depends
on assumptions about the distributions in order to be mean-
ingful. When such assumptions cannot be made, an alter-
nate approach is required. One such approach is an infor-
mation theoretic approach, wherein the deviation from pure
randomness is estimated by entropy of a distribution.

Sample entropy of �� In Entropy(��) the entropy of the
(probability) distribution of each feature for the � � sample
set is estimated. The intuition is that for a feature to be rel-
evant the �� samples should be clustered, i.e., the entropy

of the distribution should be small. As the features are nor-
malized to lie in [0,1] , we divide this interval into 
 equal
sub-intervals. Let ���� = probability of the ��� feature of ��
samples to occur in the � �� sub-interval.

�� � ���
 �

��

���

����� ��� ����� (4)

The advantage apparent in Entropy(��) is that it does not
require the �� distribution to be unimodal or have any other
parametric characterization. The disadvantage is that it only
considers �� distribution and ignores the �� distribution.

Sample entropies of �� and �� In Entropy(��� ��), we
use both the �� and �� distribution entropies for the score.
The trivial extension of the previous method is to estimate
the entropy of the �� distribution as well. This means that a
good feature is one that gives a non-random distribution for
�� as well as �� samples.

As before, the [0,1] interval is divided into 
 equal sub-
intervals. Let ���� = probability of the ��� feature of �� sam-
ples to occur in the � �� sub-interval. Let ���� = probability of
the ��� feature of �� samples to occur in the � �� sub-interval.

�� � 	 ���
 �

��

���

����� ��� �����

�

��

���

����� ��� ����� (5)

The disadvantage of Entropy(��� ��) is that it loses sight
of the ultimate objective, namely, discrimination of �� sam-
ples from �� samples. The score can be high even if the ��
and �� distributions are non-random in identical ways.

KL distance There exists an entropy based measure
of dissimilarity between two distributions, the Kullback-
Leibler distance (divergence 1). One may use this measure
to determine how much the �� distribution differs from the
�� distribution. Using same definitions as before,

�� �

��

���

����� ���
����

����
� (6)

Note that the above measure, KL-Asymm, is not symmetric
in �� and ��. This may be justified on the grounds that ��
defines a coherent ‘foreground’ while the �� is a delimiter
or ‘background’. However, the measure can be made sym-
metric with minor modifications. The KL-Symm measure’s
score is computed as:

�� �

��

���

����� ���
����

����
� �

��

���

����� ���
����

����
� (7)

1It is not a metric in the strict sense, but in the present context we shall
treat it as such.



4. Description of the Evaluation Pro-
cedure

At first glance it would seem that the KL-divergence metrics
will easily outperform the other methods. However, they
have two disadvantages: (1) high computational cost (we
need to generate frequency histograms); and (2) they are
not robust to small sample set sizes. Therefore we chose to
evaluate all the methods uniformly without prejudice.

When testing the methods we found the following dis-
advantages in using real data: (1) it is very difficult to say
which features are best for a given example set (i.e. ground
truth is absent); (2) using real data, it is difficult to exhaus-
tively try out all distribution possibilities; and (3) we will
have small sample sets and it would be difficult to decouple
the inherent limitations of a method from its sensitivity to
sample set sizes.

These considerations prompted the formulation of a test
procedure independent of the CBIR system that would use
artificial data and focus exclusively on feature selection.

4.1. Generation of sample distributions

The �� and �� feature distributions are artificially gener-
ated, but in such a way as to model real distributions. Mul-
tiple �� and �� sample distributions are used which broadly
cover all the possibilities. The generated distributions are of
6 main types:
d1: �� and �� samples form two distinct clusters.
d2: �� and �� samples form two overlapping clusters.
d3: �� samples form a tight cluster and �� samples are ran-
dom (uniform distribution).
d4: Both �� and �� samples are random (uniformly dis-
tributed).
d5: �� sample distribution is bimodal and the two modes
are on either side of a single (unimodal) �� sample cluster.
d6: �� samples are random (uniformly distributed) but ��

samples form a cluster.
The reasoning behind d1..d6 is the following: d1 is the
simplest and best distribution for discrimination; d2 com-
plicates it by having substantial overlap; d3 and d6 check
whether a method can handle one of �� and �� samples
being completely random; d4 is the worst possible feature;
and d5 is the simplest case of multi-modal genre (i.e. one
set is bimodal and the other unimodal). The clusters are
modelled as Gaussian distributions. The variances of all the
clusters are set to 0.15 and the samples are confined to the
range [0,1]. In this section, the notation used is that a fea-
ture having a distribution di is labelled f(i).

4.2. Figures of merit for selection methods

We will now describe the figures of merit used to assess the
algorithms.

Testing Ranking Ability: Features belonging to the dif-
ferent distribution types are given and each algorithm gen-
erates a ranking of the features. The following criteria are
used to evaluate the ranking generated by each algorithm:
(A) Do f(1)’s have top scores? (Method can handle simplest
and most favorable case)
(B) Do f(5)’s have top scores? (Method can pick good non-
unimodal features)
(C) Are f(4)’s at the bottom ? (Method can reject irrelevant
features)
(D) Do f(2)’s,f(3)’s and f(6)’s score higher than f(4)’s ?
(Method can distinguish non-ideal features from irrelevant
features.)
(E) Are f(2)’s graded worse than the f(1)’s ? (Method con-
siders �� samples, and hence overlaps)
Methods are credited +1 for positive answers, -1 for nega-
tive answers and 0 if results are inconclusive.

Testing Sensitivity to Sample Set Sizes: We also inves-
tigated the sensitivity of the methods to sample set sizes.
This was done because the estimation of means, variances
and entropies becomes erroneous as the number of samples
decreases. The sensitivity of methods to set sizes varies ac-
cording to the type of parameters used and the nature of use.
To evaluate this aspect we checked how well scores for d1
distributions were separated from the corresponding scores
for d4 distributions, for different set sizes. The intuition
being that d1’s are the ideal features and d4’s, the worst
possible. The means and variances of the distributions were
kept constant. The more the separation for low sample set
sizes the better it is since it would mean that the algorithm
is less sensitive to low set sizes. To assess this, we defined
a figure of merit, 
���, for every method (i).


��� �
����� � �����
����� � �����

Where ����� and ����� are the means, and ����� and ����� are the
standard deviations of the scores generated by method(i), of
features belonging to d1 and d4 distribution types respec-
tively.

Testing Performance for Real Queries and Data: Last
but not the least, an attempt was made to evaluate the ef-
fect of various feature selection methods on the full CBIR
system. The test was done with one user in the loop and
assessed how well various methods are able to exploit user
feedback. For various queries, the number of iterations re-
quired for retrieving 50 images was determined. This was
done for different sizes of positive and negative example
sets (taken from the same database).

5. Experimental Results

For the first two experiments involving simulations with ar-
tificial data, the scoring is done only once (i.e. no iterations)



Rank Delta-Mean InvSigma Membership Entropy(��) Entropy(��,��) KL-Symm KL-Asymm

��� f(1) [1.00] f(1) [1.00] f(5) [1.00] f(1) [1.00] f(1) [1.00] f(1) [1.00] f(1) [1.00]
	�	 f(1) [.999] f(1) [.994] f(5) [.999] f(2) [.992] f(1) [.995] f(1) [.998] f(1) [.997]
�
	 f(2) [.559] f(2) [.989] f(1) [.984] f(1) [.991] f(2) [.981] f(5) [.897] f(5) [.991]

�� f(2) [.556] f(5) [.974] f(1) [.982] f(5) [.982] f(2) [.977] f(5) [.896] f(5) [.985]
��� f(3) [.003] f(5) [.973] f(2) [.974] f(5) [.977] f(5) [.856] f(2) [.406] f(2) [.398]
��� f(5) [.002] f(2) [.970] f(2) [.971] f(3) [.975] f(5) [.851] f(2) [.396] f(2) [.396]
��� f(5) [.0013] f(3) [.964] f(3) [.943] f(2) [.971] f(6) [.495] f(6) [.256] f(6) [.372]
��� f(4) [.0007] f(3) [.963] f(3) [.936] f(3) [.969] f(3) [.491] f(3) [.255] f(6) [.364]
��� f(3) [.0006] f(6) [.364] f(4) [.759] f(4) [.008] f(6) [.489] f(3) [.253] f(3) [.141]
���� f(6) [.0005] f(4) [.364] f(4) [.755] f(6) [.008] f(3) [.489] f(6) [.252] f(3) [.138]
���� f(4) [.0004] f(6) [.362] f(6) [.448] f(6) [.008] f(4) [.007] f(4) [.002] f(4) [.002]
�	�� f(6) [.0001] f(4) [.361] f(6) [.446] f(4) [.007] f(4) [.007] f(4) [.001] f(4) [.001]

Table 1: Scores and ranks generated by the seven algorithms under study.

and no user interaction is involved. The first experiment is
to see how the algorithms compare with each other, given
a fixed number of samples. In order to eliminate any influ-
ence of sample set size on the ranking ability the number of
samples was fixed at 10,000. Twelve feature distributions
are generated, consisting of two per category (d1..d6). The
twelve scores computed by each method are normalized so
that the best score is 1.00. The detailed results are given in
Table 1. The twelve distributions are separately ranked by
each method, as shown in each column. Each entry indi-
cates the type of distribution and its normalized score.

Based on the results shown in Table 1, the seven methods
are evaluated as per the five criteria listed earlier in Sec 4.2.
The results are as shown in Table 2.

A B C D E Total
Delta-Mean +1 -1 +1 -1 +1 1

Inverse Sigma +1 +1 +1 -1 -1 1
Membership +1 +1 0 -1 +1 2
Entropy(��) +1 +1 0 -1 -1 0

Entropy(��,��) +1 0 +1 +1 -1 2
KL-Symm +1 +1 +1 +1 +1 5

KL-Asymm +1 +1 +1 +1 +1 5

Table 2: The points earned by each method as per the results
shown in Table 1. The criteria are listed in Sec 4.2.

It can be seen that the KL divergence methods score
highest. The reason is that these methods do not make
any assumptions about unimodality or any particular kind of
distribution. Additionally, these methods fully utilize the in-
formation available in both �� and �� sample sets. Amongst
the statistical methods, InvSigma performs as well as the
original Delta-Mean method while the Membership method
outperforms both. It is important to note that in these artifi-
cial tests there is no user interaction.

The second experiment is performed to investigate ro-
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Figure 1: Graph of 
��� versus the sample set sizes. Reduc-
tion in set sizes affects the ability of all methods to discrim-
inate between good and bad features (f(1) and f(4)). This
deterioration is not same for all methods. The relative mer-
its of the methods cannot be judged from this graph alone.

bustness with respect to small �� and �� sample set sizes.
Recall that the first experiment had 10000 samples in each
set so as to negate any effect due to sample set sizes. In
practice, sample set sizes can start from as small as 5 and
grow with each iteration. For simplicity, only three of the
seven methods are tested in the second experiment. These
three are: (i) KL-Symm, which is the best; (ii) Member-
ship, which is the best statistical method and (iii) InvSigma,
which depends on the least number of parameter estimates.
The behavior of the three selected methods was observed
for sample set sizes of �10, 50, 100, 500, 1000, 10000�.

It can be seen from Figure 1 that the KL-Symm algorithm
gives separable clusters for sample set sizes greater than 33.
The reason for such behavior is that in order to calculate
entropies of distributions we need to quantize the data and
generate frequency distributions. This operation becomes
highly inaccurate as the number of samples becomes small.
The InvSigma method is most robust with respect to sample
set size reduction. As the set sizes reduce, KL-Symm first
becomes worse than InvSigma and finally becomes worse



than Membership. We can see from the Figure 1 that for
samples set sizes greater than 10 the KL-Symm algorithm
fares better than Membership algorithm. Clearly, a hybrid
strategy may be called for. The system may start off using
InvSigma or Membership (when �� and �� sets are small)
and switch over to KL-Symm as the set sizes build up. The
actual choice of methods depends on the merits of a method
as well as its suitability for a given sample set size.

The third experiment investigates the merits of various
selection methods in the context of actual CBIR applica-
tion. The database chosen is a set of 10,000 images of vary-
ing sizes and types (outdoors, artificial, portraits, textures,
signs etc). Three different queries are tried. (i) Garden flow-
ers: Images with red flowers against a backdrop of greenery.
(ii) Sea: Images having land/water combinations or open
sea. (iii) Sports cars: Images of racing cars. Each query
is started with initial �� and �� sets of three sizes - 5/5,
10/10, 20/20. The average number of iterations required to
retrieve 50 acceptable images is shown in Table 3. In some
cases only the �� set increased dramatically and the search
had to be stopped as a failure. These are marked as X.

5,5 10,10 20,20
Delta-Mean 7 6 5
InvSigma X X X

Membership 7 5 4
KL-Symm X 5 3

Table 3: Number of iterations required for extracting 50 im-
ages for various methods. Columns represent various initial
(��, ��) set sizes . Results are average of 3 queries.

When used in a real application, the inability of the
InvSigma method to utilize the �� sample information
proves fatal. The KL-Symm method does very well for large
sample set sizes but breaks down completely at the smallest
size. The Membership method fares better than the Delta-
Mean method and deteriorates gracefully as sample set size
decreases. Although KL-Symm seems to produce results
comparable to those by Membership at size of 10 itself, the
computational cost of this algorithm may not warrant its use
for sizes less than 20. It is recommended that the Member-
ship method be used initially and the KL-Symm method be
invoked later as sample set sizes approach 20.

6. Conclusions

The choice of a feature selection method plays a critical part
in the success of a versatile CBIR system. Such systems
owe their versatility to a highly redundant feature set. In
order to optimize the system in real time to a specific query,
it is necessary to have a fast feature selection module that
can adapt the system to each query at each iteration.

The present work investigates seven different methods

for scoring the features. All of them have linear compu-
tational complexity w.r.t. number of features. Its results
highlight three desirable attributes of any feature selection
method: (1) The method should not make any assumption
regarding the distribution of a feature value in either the
positive or negative exemplar sets; (2) The method should
utilize the information in both sets; and (3) The method
should not require large exemplar sets.

The seven methods presented in this work are first cali-
brated as per desirable properties as feature selectors for dis-
crimination tasks. Three of the seven methods are then ex-
amined for robustness to sample set size variation. Finally,
these three, along with the original Delta-Mean method,
are tested in a CBIR system with real data and high level
queries. The results indicate that an optimal solution may
be a hybrid one where the Membership method is used ini-
tially for sample set sizes less than 20 and the KL-Symm
method is invoked later for larger sets.
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