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Abstract

Visual object detection using single cue information has
been successfully applied in various tasks, in particular
for near range recognition. While robust classification and
probabilistic representation enhance 2D pattern recogni-
tion performance, they are ’per se’ restricted due to the lim-
ited information content of single cues. The contribution of
this work is to demonstrate performance improvement us-
ing multi-cue information integrated within a probabilis-
tic framework. 2D and 3D visual information naturally
complement one another, each information source provid-
ing evidence for the occurrence of the object of interest. We
demonstrate preliminary work describing Bayesian deci-
sion fusion for object detection and illustrate the method by
robust detection of traffic infrastructure, and add an exten-
sion to integrate belief dynamically from image sequences.

1 Introduction

Object recognition and detection based on visual informa-
tion has been successfully applied in various tasks [9, 8,
26, 25], in particular for near range recognition [25, 12,
10, 20, 18]. Specific tasks impose additional challenges on
the robustness of a detection system, such as outdoor imag-
ing (e.g., illumination variations) or automatic object detec-
tion from preprocessed regions of interest (ROIs) in real-
world images. To overcome these problems, robust recog-
nition [10], illumination tolerant classification [2] and prob-
abilistic detection [12, 20, 18] have been introduced to en-
hance the performance of 2D pattern recognition methods.
However, performance gains from these methods remain re-
stricted as long as they rely on the limited information con-
tent of single information cues.

The original contribution of this work is to demonstrate
that the integration of multi-cue visual information im-
proves detection performance within a probabilistic frame-
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work. The essential role of information fusion in image un-
derstanding [23] and pattern recognition has already been
sufficiently outlined. Though, most work on fusion focuses
either on the integration of multi-source data [6] or on the
dynamic accumulation of evidence from single-cue infor-
mation [3, 19]. The utility of multi-cue evidence has been
stressed for tracking issues [5] and visual servoing tasks
[24]. The presented work outlines integration within the
mathematical framework of Bayesian decision fusion and
with respect to the context of visual object detection. De-
tection is here triggered by the fusion of 2D and 3D infor-
mation which naturally complement one another, each in-
formation source providing evidence for the occurrence of
the object of interest.

Multi-cue object detection is evaluated within experi-
ments of a characteristic Mobile Mapping application. Mo-
bile Mapping of environment information from a moving
platform plays an important role in the automatic acquisi-
tion of GIS (Geographic Information Systems). The extrac-
tion of traffic infrastructure from video frames captured on
a moving vehicle requires a robust visual object detection
system that provides both high localization accuracy and the
capability to cope with uncertain information [18]. The ef-
ficient extraction of vertical object 3D structure [14] and the
robust detection of traffic signs using 2D appearance based
object recognition [17] are now combined to give an im-
proved estimate on the object identity and location within
the video frame.

The method on probabilistic multi-cue information fu-
sion is sketched as follows (Figure 1),

1. Object specific 3D reconstruction and range segmen-
tation.

2. Probabilistic modeling of object relevant 3D informa-
tion.

3. View based object detection using a probabilistic neu-
ral network.

4. Bayesian decision fusion of 2D and 3D multi-cue con-
fidence support maps.

5. Maximum-A-Posteriori (MAP) classification with re-
spect to the object confidence maps.



Figure 1: Concept of the object detection system using multi-cue information fusion.

The paper gives an outline of the probabilistic multi-
cue object detection methodology and demonstrates prelim-
inary results.

2 Probabilistic object localization
from 3D information

In order to achieve a probabilistic representation of object
location, the 3D information is first recovered from a video
frame sequence. In Mobile Mapping applications, object lo-
cation refers in many cases to a ground plane (road, rail-
road embankment, etc.). Redundant data on object height is
therefore used for aggregation of object evidence which is
here formulated within a probabilistic framework to enable
segmentation and multi-cue fusion in the sequel.

2.1 Recovery of 3D information

3D reconstruction of the environment is here accomplished
by structure from motion. Corresponding points in succes-
sive images are obtained by a stereo matching tool (Hier-
archical Feature Vector Matching, HFVM, [15]) which has
been adopted for the case of motion stereo [16]. It gener-
ates a dense disparity map (correspondences on almost each
pixel). For 3D reconstruction, the orientation of the camera
with respect to the moving vehicle [27] is determined in a
calibration step. We assume odometry and velocity infor-
mation to be available for each image. This enables, to-
gether with the system calibration, the exact orientation of
each camera position with respect to the route and to de-
termine both the distance to a matched point and the exact
position within 3D space.

The idea of 3D object specific segmentation is based on
the fact that - for many cases in Mobile Mapping - ob-
jects of interest are mounted vertical (Figure 2a,b). As a

consequence, the projection of all measured object points
generates an aggregation on the horizontal plane (Fig-
ure 2c). Stored in a digital elevation model (DEM), these
aggregations can be easily segmented, e.g., by lowpass fil-
tering and thresholding. Backprojection of the identified
segments gains ROI’s in the input frame (Figure 2d). As
a byproduct, for each pixel on these segments the dis-
tance as well as the global coordinates give important scal-
ing information for the following object recognition steps.
Additional valuable information such as a prediction for the
track angles in the image, a prediction for the sky region,
or the Focus of Expansion (FOE) can be extracted directly
from the orientation data.

2.2 Probabilistic representation of object lo-
cation

Each single object location - which has been derived from
a point aggregation (Section 2.1) - impicitly represents un-
certain information. We propose to model this local uncer-
tainty by a multivariate unimodal Gaussian ��������� ,� � �����
	 �
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with mean

% � and covariance matrix � � and with respect
to a sample � within the ground plane. � � �,��� represents
thus the probability density function given an object 2 � by! ���
� 2 � � (Figure 3(a)).

For each video frame and its mapping of 3D locations
onto the ground plane, one can automatically find the ap-
propriate locations of means,

% � , by applying a cluster-
ing scheme. A statistically efficientuseful cluster algorithm
which naturally makes sense out of these local Gaussian dis-
tributions, is the expectation-maximization (EM) algorithm
[7]. It approximates an entire distribution of samples by a
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Figure 2: Object specific segmentation of 3D information.
(a) Video frame of reference, (b) vertically accentuated 3D
structure (A-D), (c) 3D point aggregations from motion
stereo, (d) associated 2D regions of interest.

mixture density model, i.e.,

! ����� 	 �
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where the parameters
� ����� are the mixing coefficients.� ��� � can be regarded as prior probabilities for the data

points to have been generated from the jth component of
the mixture. EM iteratively determines appropriate means
and covariances so as to maximize the likelihood of the data
with respect to this model.

Each single cluster kernel - represented by the Gaussian
- is then assumed to represent the localization uncertainty
with respect to a single local 3D object. These confidence
values are then backprojected into the input frame accord-
ing to Section 2.1 (Figure 3, 6(b). Backprojected points are
members of cluster � (up to some confidence threshold) and
result in a confidence support map with respect to object
specific 3D information.

(a)

(b)

Figure 3: (a) Single-class Gaussian with ellipsoid of uni-
form Mahalanobis distance to mean

% � superimposed, (b)
projected confidences into 3D object related ROIs (zoomed
out from Figure 6(b)).

3 Probabilistic view based
object detection

Object recognition based on 2D information is a further op-
eration concerned in a multi-cue detection scheme. The
classification is based on a model database of image tem-
plates which were, e.g., manually segmented from real im-
agery. Efficient object localization and detection is corre-
spondingly outlined in [12, 17]. The presented work out-
lines appearance based pattern matching in a probabilistic
framework [12, 21, 19] to quantify the level of uncertainty
in the classification and hence further enable reasoning on
the dynamics of visual information.

Appearance based representation The detection pro-
cess is based on a recognition module operating on local
image patterns which are successively extracted from the
image (Figure 4). Appearance based object representations
[13] consist of a collection of raw sensor footprints com-
bining effects of shape and reflectance [12, 21, 19]. In con-
trast, geometric models suffer from matching complexity
and fail to work for complex shapes [8]. Instead of stor-
ing high-dimensional pixel patterns 	 , the sensor vector can
be transformed by principal component analysis (PCA) to
a low-dimensional representation � in feature space, called
eigenspace [13]. It captures the maximum variations in the



Figure 4: Object detection of traffic signs. Subwindows
from the image are projected to eigenspace (PCA) and
mapped by RBF networks for a probabilistic interpretation.

presented data set whereas distances are a measure of im-
age correlation [13, 12]. Recognition is supported by the
property that close points in subspace correspond to similar
object appearances.

Probabilistic matching Object representations with
models of uncertainty in eigenspace require estimates of
the data density [12]. The present system uses this con-
cept under definition of a rejection class w.r.t. background
for a closed world interpretation [21]. A posterior neural
classifier maps then the PCA description to a distribution
over predefined object classes [21, 18]. Radial basis func-
tions (RBF) networks [4, 21] apply a Bayesian framework
with density estimations provided by unsupervised cluster-
ing, where the confidence estimates are refined by super-
vised learning. The feature vector � is fed to the network
and mapped to the output ��� , � 	 �

��� � ,
�

is the number of
objects, for a posterior estimate,

�� ��2�� � ��� 		�
��� ����� , � is
a normalizing constant. A decision on object recognition is
applied using a Maximum A Posteriori (MAP) decision on
� � .

4 Multi-cue decision fusion for object
detection

Bayesian decision fusion Fusion with respect to 2D
and 3D information on object specific evidence is here ap-
plied to the corresponding posterior estimation, i.e., the be-
lief distributions related to 2D and 3D information. In par-
ticular, Bayesian decision fusion [1, 6] is operated on the
2D and 3D multi-cue confidence support maps: A naive
Bayes classifier [17] represents then the simplified Bayesian
update of the probability distribution on object hypotheses
(results in Figure 6(d)).

The fusion method is outlined as follows. In a set of� 	 �
�� � different confidence support maps, global confi-

dence in the classification is updated by fusion of a ’current’
cue specific belief

�! �2 � � ��� � with the integrated hypotheses�! �2 � � � � 0 ����� 0���� * � � . The overall belief in hypothesis 2 � is
calculated by Bayesian inversion [22],

�! ��2 � � � � 0 ����� 0���� � 	
� �! �,� � 0 ����� 0������ 2 � � �! ��2 � � , where � is a normalizing con-
stant. Recursive updating is simplified assuming conditional
independence of the measurements [22] which implies

�! ��2 � � � � 0 ����� 0������ 	�� �! ��2 � � ��� � � �! �,� � � 2 � � � (2)

A local decision on object identity is then performed via
Maximum-A-Posteriori (MAP) [11] classification with re-
spect to a location represented in the � confidence maps.

Dynamic fusion from image sequences We con-
sider several methods to improve the multi-cue fusion
method using information integration over time. Firstly,
we concern the clustering of probabilistic estimation of
3D location (Section 2) and apply a motion model us-
ing a Kalman filter based tracking approach. This re-
sults in a trajectory of probabilistic object location over
time. Secondly, the tracked 2D information can be in-
tegrated with Bayesian decision fusion, according to�! �2���� � ��� � 0�� ��� � * � � 	�� �! �,� ��� � 0�� ��� � * � � 2���� �! ��2�� � .
5 Experimental results

The presented multi-cue detection system is a general pur-
pose system to automatically localize objects such as traffic
signs [17], subway or railway objects [18], etc. The images
used for the experiment were captured from top of the mea-
surement waggon of the Austrian Federal Railways, during
a regular train trip from Vienna to Graz.

For the 2D detection classifier, the posterior belief func-
tion was estimated by a radial basis functions (RBF) neural
network classifier which was trained using 724 sample tem-
plates from 7 highly relevant sign classes. The evidence
contributed by different R,G,B channels was fused accord-
ing to a classifier combination [17] to receive increased de-
tection performance, i.e., � �"!$# recognition accuracy on
the complete test set, including severe illumination changes
and noise in the image extraction [18]. A detailed descrip-
tion of the 2D recognition experiments is found in [17].

The performance of the 3D segmentation method was
monitored on extended video frame sequences, mostly
demonstrating robust performance [16, 18]. However, in
rare cases the 3D information was not recovered, possibly
due to the large extent of visual motion which is encoun-
tered when the observer is in the process of passing by.



class symbol sample

Hauptsignal-HS

Hauptsignal (back)-HSb

Vorsignal-VS

Vorsignal (back) -VSb

Fahrleitungssignal-FS

Geschwindigkeitstafel-GT

Signalnachahmer-SNA

Table 1: Object classes for traffic light/sign recognition (ob-
ject terminology according to Austrian Federal Railways).

Since a detection system must minimize its resulting neg-
ative false classifications and should not overlook any ob-
jects along the route, these cases require even more robust
methods as the presented multi-cue information fusion.

Figure 6(a) depicts a typical video frame from a railway
route including a near range object (traffic light). Here, the
resulting scatter image of the ground plane (Figure 5(a))
will not enable an accurate localization. Therefore, the scat-
ter image is processed by the EM clustering algorithm (Sec-
tion 2.2, Figure 5(b)) to provide a probabilistic representa-
tion of object location. The cluster points are then back-
projected into 2D (Figure 6(b)) to enable information fu-
sion (section 4). Figure 6(c) illustrates the confidence sup-
port map as result of the 2D classifier. The final confidence
map according to pixel-wise multi-cue decision fusion is
presented in Figure 6(d). It is clearly seen that the fusion
operation is capable to ’wash out’ multiple erroneous and
ambiguous confidence values from 3D and 2D processing.

6 Discussion

The presented work provides a system prototype that suc-
cessfully demonstrates the concept of multi-cue - i.e., 2D
and 3D - information fusion within a probabilistic frame-
work, with the aim to render object detection more robust.
The method represents a starting point for more complex
Mobile Mapping systems that would be capable to perform

(a) (b)

Figure 5: (a) Scatter image with origin of observer to ob-
ject distance (x,y) at the top left corner, (b) location specific
probability distributions extracted by EM clustering algo-
rithm (Section 2.2).

reasoning for the efficient use of uncertain multi-cue visual
information.

This paper demonstrates preliminary work which we ac-
count as a promising basis to profoundly investigate multi-
cue fusion with respect to various informatio sources. Fu-
ture work will focus on extended statistical evaluations of
the presented system, the effect on multi-frame tracking and
decision fusion on spatio-temporal cues, and on attention
based mechanisms that enable efficient use of the given vi-
sual information.
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Figure 6: (a) Original image, (b) confidence ROIs from
original image - high confidences in black, (c) confidence
results from scanned 2D information object interpretation,
(d) confidence map fused from 2D and 3D information.
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