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Abstract

Multiview relations such as the Fundamental matrix and
the Trilinear tensor provide scene-independent character-
ization of a combination of views in the form of algebraic
constraints. In this paper, we present a number of mul-
tiview constraints for collections of primitives, such as a
planar shape boundary. The rich domain of Fourier trans-
forms helps us to combine the properties of the collection
with the multiview situation. We derive a number of view-
independent algebraic constraints under the assumption of
affine image-to-image homography. These constraints pro-
vide useful tools to match and recognize planar boundaries
across multiple views without the knowledge of the camera
parameters or pixel-to-pixel correspondence. We present
the results of shape matching in a number of synthetic and
real situations in this paper.

1. Introduction
Analysis of multiple views of the same scene is an area of
active research in computer vision. The study of the struc-
ture of points and lines in two views received much atten-
tion in the eighties and early nineties [2, 4, 8]. Studies on the
constraints existent in three and more views have followed
since then [3, 10, 11, 12]. These multiview studies have
concentrated on how geometric primitives like points, lines
and planes are related across views. Specifically, the alge-
braic constraints satisfied by the projections of such primi-
tives in different views have been the focus of intense stud-
ies.

An important issue in multi-view analysis is recognition.
The problem of recognition in the context of multiple views
is as follows: Given the image of an object in one or more
views, can we recognise the object in novel views, specif-
ically, when the viewing parameters of the camera are un-
known.

An object can be recognised either based on the object-
boundary or the textural and structural content inside the
boundary. In this paper, we limit the recognition problem
to that of recognising planar objects from their boundaries.

A notable object recognition approach is due to Ullman and
Basri [13] who formulated the recognition problem using
linear combination of models, for orthographic views. This
recognition differs from the conventional shape recognition
approaches. This provides algebraic constraints between
different views of the same object in contrast to a set of fea-
tures invariant to similarity transformations. This algorithm
was later generalised by Shashua [11] for perspective views.
These results demonstrate that the various views of an ob-
ject lie in a lower dimensional linear subspace and there can
exist some algebraic constraints for recognition of objects in
multiple views.

A number of approaches have been proposed for planar
shape recognition. Algorithms for planar shape recognition
include recognition by alignment [5], polygonal approxima-
tion [9], based on geometrically invariant features [6],etc. .
Boundaries are also recognised by modelling the boundary
in a transform domain like the Fourier one [14]. All these
algorithms limited their attention to similarity transforma-
tion between views. In most practical situations, the im-
age to image homography is more general than the simple
similarity transformation. When a planar object is imaged
from multiple viewpoints, the image to image transforma-
tion is general projective and the conventional algorithms
based on Euclidean and similarity frameworks will not work
for them. Klaus Arbter et al. [1] formulated techniques for
affine invariant recognition. Their emphasis was on choos-
ing a suitable set of affine invariant features and then per-
form matching in an affine invariant space.

In this paper, we try to analyse the properties of a collec-
tion of points, such as a planar object’s contour, in multiple
views instead of analysing them as independent points. Col-
lections of points such as a boundary have more informa-
tion than isolated points. The sequencing inherent in such a
collection makes a transform domain approach, such as the
Fourier one, a good tool to study their properties. The linear
image-to-image relationships combined with the properties
of the contour in the Fourier domain enable rich constraints
that essentially characterize the contour independent of the
viewpoint. We come up with a number of view-independent



characterizations of the planar shape boundary using mea-
sures computed in the Fourier domain. Recognition of a
shape in different views is a natural consequence if the de-
scription is invariant to the types of view transformations.
We present the problem of recognition in multiple views in
the form of a rank constraint on a matrix computed from the
contours. Some preliminary results were presented in [7].

We formulate the basic problem of view-independent
characterization and give our notation in Section 2. Section
3 presents the main results in terms of a number of rank con-
straints on the measurement matrices computed from the
Fourier domain representation of contours. Results of ex-
periments on synthetic and real data are given in Section 4.
Some concluding remarks are in Section 5.

2.  Problem Formulation

When a planar object is imaged from multiple view points
or when a scene is imaged by cameras having the same op-
tical centre, the images are related by a unique homogra-
phy [4]. A homography or a collineation is a mapping from
one plane to another such that the collinearity of a set of
points is preserved. In other words, a homography, more
precisely a projective homography, is an invertible mapping�

from ��� to itself such that three points ��� , � � and �
	 lie
on the same line if and only if

��� ���� , ��� � �  and
��� �
	� are

also collinear.
Plane-to-plane homographies can be categorised into

isometry, similarity, affine and projective [4]. The later
classes subsume the earlier ones, i.e., isometry �
similarity � affine � projective. Projec-
tive homography is mathematically most general. In this
paper, we derive the rank constraints for affine homogra-
phies, and later show that the constraints are valid in most
practical situations of imaging a scene from multiple points,
when the image to image homography is projective. Let
the image-to-image transformation of points from view 0 to
view � be given by a ����� matrix ��� .� ��� ���! � � �#" � ��� (1)

Let O be a set of $ points on the boundary of a planar
object and let % � be its images in views & � where � is the
view index. Let

�(' � � ����)�* � � ���+)-, � � ���  be the homogeneous co-
ordinates of points on the closed boundary in view &�� . This
shape is represented by a sequence of vectors of complex
numbers as shown below.� � � ���! /.0 ' � � ���214365* � � ���217365, � � ���217365 89
(
, � � ��� need not be 1). Let the Fourier domain representation

of the sequence � � � ���+)�5;:<�>= $ be ? � � @6�+)�5A:B@C= $

such that ? �-� @6�! .0ED � � @6�F � � @6�G � � @6� 89
where D � � @6�H D �I � @2�J1K3 D �L � @6� , F � � @6�H F �I � @6�
1K3 F �L � @6� ,G � � @2�K G �I � @6��1M3 G �L � @6� are respectively the Fourier
transforms of the individual sequences

�(' � � ����1N365  ) � * � � �O�P1365  ) � , � � ���!1Q365  . The subscripts R and S denote the real
and imaginary components of the corresponding complex
number. Note that the sequences ? � � @2� are periodic and
conjugate symmetric.

Theorem 1: The Fourier transform and the collineation
commute with the above representation. That is, if points
are transformed between views

5
and � using Equation 1, the

same homography will transform corresponding frequency
terms in the Fourier domain also. In other words,? � � @2�! ���(? " � @6� ,

5T:U@N= $WV (2)

Proof: Let � �  YX �[Z]\ )�^_:Q�`)+3>: � . Expanding Equation 1
for the

'
term,' � � ���! CX �a��� ' " � ���21;X �a� � * " � �O�b1cX �a�-	 , " � �O�

Taking the Fourier transform of the above equation and us-
ing the linearity property of Fourier transforms, we getD � � @2�! UX �a�`� D " � @2�d1;X �a� � F " � @6�d1;X �a�e	 G " � @6�
Similarly for

F � � @2� and
G � � @6� . It is now easy to see that? � � @6�! �f�(? " � @6�

giving us the desired result. g
Given a set of h views, the recognition problem can be

formulated as the identification of a view-independent func-
tion i �ej  such that i � � " ) � � ) VkV�V ) ��l   U5 . This recognition
constraint can be linear or nonlinear in image coordinates.
The algebraic relation given by i �-j  can then be used to set-
tle the question whether the h observed views were of the
same object.

3.  Rank Constraints for Recognition
If the image to image homography is affine, the transfor-
mation matrix has

X �[	m�  nX �[	 �  o5 and
X �p	�	  q^

. The
transformation can be expressed in terms of inhomogeneous
coordinates as � � � ���! Er � � " � ���21;s � (3)

where � � � ��� is the inhomogeneous representation of the
�
th

point on the contour in view � , r � is the upper t��ut minor
of ��� and

s � is the upper two elements of the last column
of �f� .



The above expression is valid for the scenarios when cor-
respondence between points across views is known. How-
ever in practice, correspondence is rarely available. In case
correspondence information is not available, Equation 3 as-
sumes the form � � � ���! Er � � " � �!1Av � �b1cs �
where shifting � " by

v � would align the corresponding
points of � " and � � . The frequency domain representation
can be given by? � � @6�# Cr � ? " � @6�xwzyd{ � 3 t}| v � @$  )c5T=Y@N= $ (4)

if the
s

term is eliminated by omitting the
@> E5

term in the
Fourier domain.

3.1. Affine Invariant
The study of invariants has been pursued actively for many
years. Invariants provide us with the ability to come up with
representations of the features in a scene that do not depend
on the view, and can prove to be extremely handy for pur-
poses of recognising objects from multiple views. In this
Subsection we explore the possibility of deriving an affine
invariant for a contour.

Let us define a measure called the cross-conjugate prod-
uct (CCP) on the Fourier representations of two views as~�� 5b) �O � @6�� �6�? " � @6� ���� �? � � @2��)�5�=U@N= $ �6�? " � @6� ���� r � �? " � @2��wzyd{ � 3 t}| v � @$ �V (5)

The matrix
r � can be expressed as a sum of a symmetric

matrix and a skew symmetric matrix as
r �  qrN�� 1Cr��e��

where
r���  �� � r � 1Yr ��  and

r��e��  �� � r ��� r ��  . The
skew symmetric matrix reduces to�T� 5 ^� ^ 5�� )
where �  CX �a� � � X � � � is the difference of the off-diagonal
elements of

r � . We now have~�� 5J) �� � @6�� �? " � @6� �-�4� r �� 1�r �-��W� �? " � @6��wzyd{ � 3 tP| v � @$ 
The first term of the above equation is purely real and the
second term is purely imaginary. We observe that the ef-
fect of the transformation matrix � � on the second term is
restricted to a scaling by a factor � . We can define a new
measure � , ignoring scale, for the sequence

�? � in view � as� � �O � @6�# �? �e� @6� ��� � 5 ^� ^ 5�� �? �e� @2� V (6)

It can be shown [7] that� � �� � @6�! �� r � � � � 5  � @6�+)�5�=Y@�= $ (7)

Equation 7 gives a necessary condition for the sequences�? � and
�? " to be two different views of the same planar

shape, or in other words, the values of the measure � �ej  in
the two views should be scaled versions of each other. This
extends to multiple views also. Consider the ��� � $q� ^ 
matrix formed by the coefficients of the � �ej  measures for
M different views.�  .��0 � � 5  �[^�� j�jkj � � 5  � $B� ^z�� � ^  �[^�� j�jkj � � ^  � $B� ^z�jkj�j j�jkj j�jkj� � ��� ^  �[^�� j�jkj � � ��� ^  � $B� ^z�

8[��9
The necessary condition for matching of the planar shape in� views then reduces to

rank
� �   �^ V (8)

It should be noted that this recognition constraint does not
require correspondence between views and is valid for any
number of views.

Since, the � measures in the various views are only
scaled versions of each other, if we normalize the � mea-
sure terms in each view with respect to a fixed one then� � �O � @6�� � � �O � @2��� � � �O � �J��) p is fixed � � r � � � � 5  � @6�  � � � r � � � � 5  � �J�  � � 5  � @2��� � � 5  � �J�� � �O � @6�� � � 5  � @2� (9)

These terms of the normalized � measure – the � measure
are independent of the view. Hence, � is an affine view
invariant of a contour, whose computation does not need
correspondence information across views.

3.2. Constraints based on Phases
If
r � is a symmetric matrix (in Equation 5), it can be shown

that the auto-correlation
~�� 5b)`5  is real. This implies that

that the phase of
~�� 5J) �O would be �` ¢¡�£ �¤ .

If we have � views, then we can form a �¥� � $�� ^ 
matrix

��¦
with the phase angles of

~�� 5b) �O � @6�+)�54=§@K= $
forming the row � . It is clear that the rows of the matrix dif-
fer only by a scale factor. Therefore,

�¨¦
is a rank deficient

matrix with a fixed rank of 1, irrespective of the number of
views. Therefore a necessary condition for recognition in
multiple views related by symmetric affine homographies is©Pª6« @ � � ¦   �^ (10)

This rank-one constraint implies that the phases of CCP in
different views are linearly related. Thus, the phases form



a signature of the shape that is invariant to affine transfor-
mations. Unfortunately this relationship is valid only if the
affine transformation (

r � ) is symmetric. Also, the CCP is
computed between each view and a fixed reference view; it
thus depends on two views.

For affine transformations when
r � can be arbitrary, we

derive a rank-two constraint as follows.
r � now contains

a skew-symmetric component in addition to a symmetric
one. We define a new measure � ¦ �ej  , which correlates each
Vector Fourier coefficient with a fixed one within each view.¬®¯6°(±³²`´ µP¶¸· °(¹»º�´ µP¶a²e¼ T �¾½ ¿À ¿ ½ � ¹»º�´ Á6¶(Â ½ÄÃ µ ÃÆÅ· °(ÇÈ¹ÊÉx´ µ}¶�Ë-Ì®ÍOÎ�Ï £³ÐÑ ² ¼ T � ½ ¿À ¿Ò½ � Ç�¹»Éx´ µP¶pË�Ì®Í�Î�Ï £[ÓÑ· °(¹ É ´ µP¶³²e¼ T Ç T � ½ ¿À ¿Ô½ � ÇÈ¹ É ´ µ}¶pË�Õ Ì6ÍOÎ�Ï £×Ö[ÐmØPÓ`ÙÑ· Ú Ç�Ú ¬ ¯ ° ½ ²`´ µP¶bË Õ Ì�Û+Ü�Ý £ßÞ[à Õ ¯záaâ+ã (11)

for any fixed
�åä æ5

. Equation 11 states that the phases
of � ¦ç � �O and � ¦ç � 5  differ by an amount proportional to the
shift

v � and the differential frequency
@ � � . Therefore,

the ratio èxéÓxê �[ëè éÓPê " ë will be a complex sinusoid ��ì6í \ �` ¢¡�£ ê � í ç ëßî ¤ .

The value of
v � can be computed from the inverse Fourier

transform of the quotient series. Thus, the phases of � ¦ç � ��
can be used as a signature for the contour.

We can also form a �q� � $A� ^  matrix
�_¦ ¦

, similar to the
one above, that stacks the phases of � ¦ � � �O (taking

�� �^
). It

will have the form
�_¦ ¦  ïKð`ñ ð Í ðeò ó-óeó ð Ñ Ø ñð`ñ ð Í
ôÊõ ñ ð-ò ô � õ ñ ó-óeó ð Ñ Ø ñ ô ê ¤ í � ë õ ñó-ó-ó ó-óeó ó�óeó ó-óeó óeó-óð ñ ð Í ôTõPö Ø ñ ð ò ô � õPö Ø ñ ó-óeóqð Ñ Ø ñ ô ê ¤ í � ë õPö Ø ñ>÷(12)

where øPZ are the phases of � ¦ � � 5  and ù
�  �ÄtP| v � � $ . This
matrix will have a rank of 2 irrespective of � . The rank
constraint on the above matrix, which is a necessary con-
dition for recognition of shapes in views related by affine
image-to-image homographies, is

rank
� � ¦ ¦   tdV (13)

We see that � ¦ can be computed from a single view. Thus,
the phases of � ¦ values provide a truly view-independent
description of the boundary.

Experiments were conducted to affirm the validity of the
above constraint. Figure 1 shows four affine transform re-
lated views of a dinosaur. When the

� ¦ ¦
was constructed

from the � ¦ measures of the four views (a), (b), (c) and (d),
with random shifts applied to the boundary representations
in each view, the rank of

�_¦ ¦
was found to be essentially 2,

the three greatest singular values being 33952.7, 58.8366,
and 0.00242446.

3.3. Constraints based on Magnitudes

Unless properly taken care, the phase based algebraic con-
straints can have problems with the phase wrap around. We
now present a rank-three constraint based on magnitudes of
the vector Fourier coefficients. We start with Equation 4.
This equation can be rewritten as

D � � @2�! � X �³��� D " � @6�21;X �a� � F " � @2�  w�yd{ � 3 tP| v � @$ F � � @2�! � X � � � D " � @6�21;X � ��� F " � @2�  w�yd{ � 3 tP| v � @$ 
Writing in terms of the real and imaginary components of
the complex numbersú ºû ´ µP¶¢üNý ú ºþ ´ µ}¶¸· °ÿ°�� º ��� ú Éû ´ µP¶¢ü�� º � Û � Éû ´ µ}¶a²Jüý6°�� º ��� ú Éþ ´ µ}¶}ü�� º � Û � Éþ ´ µP¶a²ÿ²+Ë � ÍOÎkÏ £×ÐÑ
Taking the square of the magnitudes of both sides, we getÚ ú º+´ µP¶OÚ Û · ° ú ºû ´ µP¶a² Û üc° ú ºþ ´ µP¶a² Û· °�� º ��� ú Éû ´ µP¶¢ü�� º � Û � Éû ´ µP¶a² Û ü°�� º ��� ú Éþ ´ µP¶¢ü�� º � Û � Éþ ´ µ}¶a²ÿ² Û· � Ûº ��� ° ú Éû ´ µP¶³² Û ü�� Ûº � Û ° � Éû ´ µP¶a² Û ü� °�� º ��� ú Éû ´ µP¶a²`°�� º � Û � Éû ´ µ}¶a² ü

� Ûº ��� ° ú Éþ ´ µP¶a² Û ü	� Ûº � Û ° � Éþ ´ µP¶³² Û ü� °�� º ��� ú Éþ ´ µ}¶a²`°�� º � Û � Éþ ´ µP¶³²· � Ûº ��� ´[° ú Éû ´ µ}¶a² Û ü;° ú Éþ ´ µP¶³² Û ¶Pü� Ûº � Û ´[° � Éû ´ µ}¶a² Û ü;° � Éþ ´ µP¶³² Û ¶}ü� � º ��� � º � Û ´ ú Éû ´ µP¶ � Éû ´ µP¶¢ü ú Éþ ´ µP¶ � Éþ ´ µP¶]¶ (14)

Similarly,Ú � º+´ µP¶�Ú Û · ° � ºû ´ µ}¶a² Û ü;° � ºþ ´ µP¶³² Û· � Ûº Û � ´]° ú Éû ´ µ}¶a² Û üc° ú Éþ ´ µP¶³² Û ¶Pü� Ûº ÛÿÛ ´]° � Éû ´ µ}¶a² Û ü;° � Éþ ´ µ}¶a² Û ¶¢ü� � º Û � � º ÛÿÛ ´ ú Éû ´ µP¶ � Éû ´ µP¶¢ü ú Éþ ´ µP¶ � Éþ ´ µP¶[¶ (15)

Its evident from equations 14 and 15 that the magnitude
of the components of the Fourier domain representation in
any view can be expressed in terms of the components in a
reference view.

This result can also be expressed in the following man-
ner. Given � views, we can construct a ( t®� 1�^ J� � $U� ^ 
matrix as follows. The first row consists of the sum of
products

� D "I � @6� F "I � @6�m1 D "L � @6� F "L � @2�  , 5 being the reference
view. Every view contributes two rows to this matrix (ex-
cept the reference view, which contributes 3 rows) the mag-
nitudes of D in one row and the magnitudes of

F
in the



(a) (b)

(c) (d)

Figure 1: Four affine transformed views of a dinosaur

other. Let
��¦ ¦ ¦

=.�������0
Ö�
 ��� ñ���� ��� ñ���� 
 ���� ñ�� � ���� ñ�� Ù[Ù�� � � Ö�
 ��� � ��� ��� � ��� 
 ���� � � � ���� � � ÙÖ[Ö�
 ��� ñ�� Ù Í � Ö�
 ���� ñ�� Ù Í Ù � � � Ö[Ö�
 ��� � � Ù Í � Ö�
 ���� � � Ù Í ÙÖ[Ö � � � ñ�� Ù Í � Ö � �� � ñ�� Ù Í Ù � � � Ö[Ö � � � � � Ù Í � Ö � �� � � � Ù Í ÙÖ[Ö�
 ñ�� ñ�� Ù Í � Ö�
 ñ��� ñ�� Ù Í Ù � � � Ö[Ö�
 ñ�� � � Ù Í � Ö�
 ñ��� � � Ù Í ÙÖ[Ö � ñ�� ñ�� Ù Í � Ö � ñ� � ñ�� Ù Í Ù � � � Ö[Ö � ñ!� � � Ù Í � Ö � ñ� � � � Ù Í ÙÖ[Ö�
 Í�� ñ�� Ù Í � Ö�
 Í��� ñ�� Ù Í Ù � � � Ö[Ö�
 Í�� � � Ù Í � Ö�
 Í��� � � Ù Í ÙÖ[Ö � Í�� ñ�� Ù Í � Ö � Í� � ñ�� Ù Í Ù � � � Ö[Ö � Í!� � � Ù Í � Ö � Í� � � � Ù Í Ù� � � � � � � � �Ö[Ö�
 ö"� ñ�� Ù Í � Ö�
 ö�#� ñ�� Ù Í Ù � � � Ö[Ö�
 ö$� � � Ù Í � Ö�
 ö�$� � � Ù Í ÙÖpÖ � ö%� ñ�� Ù Í � Ö � ö�&� ñ�� Ù Í Ù � � � ÖpÖ � ö%� � � Ù Í � Ö � ö�'� � � Ù Í Ù

8 �������9
(16)

(using ( for
� $ � ^  )

From equations 14 and 15, one can conclude that the
rank of

� é é is 3, irrespective of the number of views. There-
fore, the constraint, ©Pª6« @ � � ¦ ¦ ¦   � (17)

is a necessary condition for recognition in multiple views
related by affine image-to-image homographies. This ob-
servation is consistent with the notion that the various views
of a shape lie in a lower dimensional linear subspace. We
can also say that the squares of the magnitudes of the
Fourier Domain representation of a contour can be used as
a signature of the boundary. These are, naturally, view in-
dependent as they can be computed from a single view.

4.  Results and Discussions
We conducted a number of experiments to affirm the valid-
ity of the formulations in the previous section. Extensive
experimentations were carried out on synthetic images, nat-
ural images with simulated transformations and real natu-
ral images. In the rest of this section, we demonstrate the

performance of the proposed schemes with quantitative re-
sults. For simulation of views, transformations were applied
on a reference view and then the boundary representations
were shifted by random amounts in each view to simulate
lack of correspondence. In experiments on real images, ob-
jects of interest were segmented out and their boundaries
were sampled to 1024 boundary points. The ranks of the
matrices

�
,
�_¦ ¦

and
��¦ ¦ ¦

were determined using the Singu-
lar Value Decomposition algorithm, wherein the number of
non-zero singular values gives the rank of the matrix. When
the boundary representation is in the form of integer co-
ordinates, discretization introduces quantization noise that
make the rank constraint an approximation of the true one
derived, but nonetheless enforceable. To verify whether a
matrix has an approximate rank © , we give the ratio of © th
to
� © 1Q^  th singular values (arranged in descending order).

This ratio is high if the matrix has an approximate rank of© . Also all the following singular values are very small in
magnitude.

In the first example, we considered four views of a di-
nosaur as in Figure 1(a), (b), (c) and (d). These views are
related by affine transformations. One may observe that
the Euclidean measures are no longer preserved under these
transformation. However, the rank constraints allow us to
recognise a dinosaur image given another view. Ranks of�

and
��¦ ¦ ¦

were computed. Ratio of the © th and
� © 1 ^  th

singular values are used to verify the ranks. All constraints
provided the ratio to be much more than 100 in all cases.
The ratios of singular values for each pairs of images for
the invariant and magnitude constraints are arranged in Ta-
ble 1. In all cases, the © th singular value ( © = 1 for

�
and ©

= 3 for
�_¦ ¦ ¦

) was found to be greater than the
� © 1E^  th one

by a factor of
^x5¢5

or
^k5®5¢5

.

Figure 2: Three views of the logo of our institute

Now, we demonstrate the performance when a zero mean
random noise is added to the position of the synthetically
transformed shape for an affine homography. The two sin-
gular values of interest of matrix

�
for different noise levels

for real(without quantization) and discrete (integers) bound-
ary representations are shown in Table 2. This ratio does
deteriorate with noise, however, there was still more than
an order of magnitude separation between them even with a
noise of 20% in the positions of the boundary points.

The recognition is clearly very good in all cases with the
degradation in performance along expected lines. We have
achieved recognition between two planar shapes under the



Dinosaur 1 Dinosaur 2 Dinosaur 3 Dinosaur 4
Dinosaur 1 —- 43176.5, 504.423 23988.5, 322.283 35453.9, 439.72
Dinosaur 2 43176.5, 504.423 —- 25733.7, 312.512 35352.6, 322.338
Dinosaur 3 23988.5, 322.283 25733.7, 312.512 —- 17548, 137.258
Dinosaur 4 35453.9, 439.72 35352.6, 322.338 17548, 137.258 —-

Table 1: Results on Dinosaur Images. Ratios of the relevant consecutive singular values for
�

and for
�»¦ ¦ ¦

are shown

Real Discrete
Noise Singular Values Singular Values
Level Highest Next Highest Next

0 247476 0.0019 213036 73.02
0.5% 232918 63.65 229286 124.34
3% 211296 356.35 228500 483.17
5% 208896 839.34 209417 1233.88

10% 193925 1424.26 197214 2069.28
15% 190745 2324.85 176999 3251.64
20% 180199 3887.51 166523 4931.72

Table 2: Impact of noise on singular values

Views a b c

a - 431.0 505.8
b 431.0 - 292.7
c 505.8 292.7 -

Table 3: Ratio of highest singular value to the second high-
est singular value of the matrix of � measures for different
combinations of views shown in Figure 2.

assumption that the homography between them has a spe-
cific form, without knowing the correspondence between
points.

Though the theory was primarily developed for affine
homographies, the rank constraints are practically valid for
images under projective transformation. The logo of the In-
ternational Institute of Information Technology was imaged
from various viewing positions. These images are known
to be related by projective homographies. Three views are
shown in Figure 2. Ratios of the two highest singular values
of the

�
matrix for various combinations of those views are

given in Table 3. All pairs are clearly recognisable and the
ratios are more than 250 in all cases.

5.  Conclusions and Future Work
In this paper, we presented a number of view-independent
constraints for matching and recognition of planar bound-
aries under affine homographies. The constraints were

presented as the rank constraints on a matrix that can be
computed from the images alone. We presented results to
demonstrate the effectiveness of our scheme to a number
of planar shape recognition problems. Extending such con-
straints to the general projective image-to-image homogra-
phy is the next step in this direction.
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