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ABSTRACT 
 

Speckle noise usually occurs in Synthetic Aperture 
Radar (SAR) images owing to coherent processing of SAR 
data. This paper proposes and investigates the Speckle 
reduction and enhancement of SAR images with multiple 
wavelets (Multiwavelets). Multiwavelets transformations are 
useful for speckle reduction through its sub-band images and 
the speckle reduction is obtained by thresholding the sub-
band images coefficients of the digitized SAR images. 
Generalized Cross Validation (GCV) based thresholding of 
the Multiwavelet sub-band coefficients for the 
logarithmically transformed SAR image data is investigated. 
The GCV technique has proven to be an effective statistical 
way for estimating the optimum threshold required for 
denoising. Assuming that observations within a SAR images 
are outcome of independent Rayleigh random variables, the 
proposed method shows a good performance regarding 
signal-to-noise ratio improvement and edge preservation 
criteria. The algorithms have been applied to various 
simulated and actual SAR images. 
 
Keywords: SAR, speckle, multiwavelets, thresholding, 
GCV. 
 
 

1. INTRODUCTION 
 

Synthetic Aperture Radar (SAR) is an active coherent 
all weather imaging system that operates in the microwave 
region (1.25-35.3 GHz) (wavelength=24-0.8cm) of the 
spectrum. It can penetrate foliage and clouds and operate 
day or night because it provides its own illumination. The 
main problem with the use of SAR images is a kind of 
signal-dependent noise: the speckle noise. When an object 
is illuminated by a coherent source and the object has a 
surface structure that is roughly of the order of a 
wavelength of the incident radiation, the wave reflected 
from such a surface consists of contributions from many 
independent scattering points. Interference of these de-
phased but coherent waves result in the granular pattern 
known as speckle. Thus, speckle tends to obscure image 
details as it produces salt-pepper effect and hence speckle 
reduction is important in most detection and recognition 
system. 

It can be shown and verified that speckle has the 
characteristics of a random multiplicative noise [1] in that 

the noise level (or standard deviation) increases with the 
magnitude of the radar back scattering (or the mean). The 
Additive White Guassian Noise (AWGN) model is a good 
approximation for speckle [2] when considering the SAR 
intensity/magnitude image (e.g. the dB image). Logarithmic 
transformation of a SAR image converts the multiplicative 
noise model to an additive noise model.    

The effect of speckle in SAR images can be reduced by 
two techniques. The first is the sub-aperture (multi-look) 
processing applied during the image formation and the 
second is the image domain filtering technique. The former 
improves the SAR image by averaging the uncorrelated 
images from non-overlapping spectrum. The latter tries to 
suppress speckle noise after the image has been formed. 
Most image domain filters suppress speckle noise utilizing 
the spatial correlation between pixels Speckle noise filters 
include mean filter, Frost filter, Lee filter, Kuan/ Nathan 
filter, etc [3]. In speckled radar images, filtering must 
achieve a tradeoff between smoothing of homogeneous 
area and edge and texture preservation. In this work, 
information processing has been carried out in (multi) 
wavelet domain. 
  Donoho and Johnstone [4] pioneered the theoretical 
formalization of filtering additive i.i.d. Guassian noise (of 
zero mean and standard deviation σ) via thresholding 
wavelet coefficients. A wavelet coefficient is compared to a 
given threshold and is set to zero if its magnitude is less 
than the threshold; otherwise, it is kept or modified 
(depending upon the thresholding rule). The threshold acts 
as an oracle, which distinguishes between the insignificant 
coefficients likely due to noise, and the significant 
coefficients consisting of important signal structures.  For 
image denoising, the threshold choice proposed by Dohono 
[5] yield overly smoothed images as the threshold choice of 

Mlog2σ (called the universal threshold), can be 

unwarrantedly large due to its dependence on the number 
of samples, M, which is more than 105 for a typical test 
image of size 512 x 512. This thresholding mechanism also 
requires the knowledge of amount of noise present in the 
image. It has been proved that the minimum of the 
“Generalized Cross Validation” is an asymptotically 
optimal threshold [6].                                                                              
 Wavelet transform [7] performs a hierarchical 
decomposition of the signal space into a nested sequence of 
approximation spaces by translations and dilatations of one 
mother wavelet function. Whereas, the Multiwavelets spans 



the “lowpass” space by translations and dilations of more 
than one mother wavelet functions [8]. They are known to 
have several advantages over scalar wavelets such as 
support, orthogonality, symmetry, and higher order 
vanishing moments. Strela et al. [9] claimed that 
multiwavelet soft thresholding offer better results than the 
traditional scalar wavelet soft thresholding. Since the 
wavelet thresholding have been applied to log transformed 
SAR images for speckle reduction [10], it is natural to 
attempt multiwavelet denoising. GCV based thresholding 
method has been used for denoising and their results with 
various multiwavelets are compared. Classical measures of 
speckle (evaluated on homogeneous region) are the 
standard-deviation-to-mean (std/m) ratio and log standard 
deviation (log-std) [2]., both of which should decrease as a 
result of speckle reduction.   
 The rest of the paper is organized as follows.  Section 2 
first presents a brief introduction to multiwavelets.  One 
major difference between single and multiple wavelets is 
that the data have to be preprocessed before applying the 
discrete wavelet transform. Section 3 discusses various 
preprocessing filters used. Section 4 discusses the speckle 
reduction by thresholding of multiwavelet coefficients. The 
algorithm for SAR image speckle reduction is described in 
Section 5. Section 6 presents some experimental results, 
followed by the conclusions in Section 7. 
  

2. DISCRETE MULTIWAVELETS TRANSFORM 
 

The wavelets are based on the idea of multiresolution 
analysis (MRA). In wavelet it is usually assumed that MRA 
is generated by one scaling function and dilates and 

translates of only one wavelet ( )ℜ∈Ψ 2L  form a stable 

basis of ( )ℜ2L . Generalizing the wavelet case, one can 

allow a multiresolution analysis { } Ζ∈nnV of )(2 ℜL to be 

generated by a finite number of scaling functions 
rφφφ ,.......,, 21 and their integer translates (the 

multiresolution analysis is then said to be of multiplicity r). 
A vector function T

r ),...,(: 1 φφ=Φ  where r is a fixed 
positive integer and ,,...,2,1, rjj =φ  are compactly 

supported functions in ),(2 ℜL  is called an orthogonal 
multiscaling function if it satisfies the refinement equation 
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where kH  is a finitely supported sequence of r x r 
matrices, and  
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for .,...,1,,, rjiZlk =∈   Let 0V  be a closed linear span of 
the integer shifts of ,jφ i.e., 
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2 VgLgV ∈ℜ∈= −υ
υ   Then we have i) 

,1+⊂ υυ VV  ii) },0{=∈ υυ VZI  and iii) υυ VZ∈U  is dense in 

).(2 ℜL   In other words, )( υV  generates a multiresolution 

analysis (MRA) of )(2 ℜL of multiplicity r.   
 Further, let 00 VW ⊥  be the orthogonal complement of 

0V  in 1V . If ,,...,2,1,0 rjWj =∈ψ  and their integer shifts 

),(. kj −ψ ,,...,2,1, rjZk =∈  constitute an orthonormal 

basis of ,0W  then ,,...,2,1, rjj =ψ  are called orthogonal 

multiwavelets associated with .Φ  We shall also call the 
vector function T

r ),...,( 1 ψψ=Ψ a multiwavelet.  Since 
Ψ⊂ ,10 VW  satisfies 
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for some finitely supported sequence of  r x r matrices .kG   
Equivalently, in the Fourier domain, the refinement 
equation (1) can be written as 
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highpass frequency response.  In addition, if the following 
orthogonal perfect reconstruction criterion is satisfied 
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where the superscript  *   denotes conjugate transpose, then 
},{ kk GH  is said to constitute a perfect reconstruction 

orthogonal multiwavelet system of multiplicity  r ( for a 
more rigorous theoretical treatment of multiwavelets refer 
to [8]). A particular signal of interest, 0)( Vxf ∈ , can be 
written as a linear combination of the basis functions 
{ } rmkxm ,...2,1,)( =−φ , with weight vector 
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In the scalar-valued expression l
kjv , , j refers to the scale, k 

refers to the translation, and l refers to the sub-channel or 
vector row.  

The filter bank implementation equation becomes: 
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This is one stage of a multi-input multi-output (MIMO) 
filter bank as shown in Figure 1. The reconstruction 
formula for orthogonal multiscaling and multiwavelet 
functions takes the form 
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which is the synthesis equation. 
 
Multiscaling and Wavelet functions 
 
In practice multiscaling and wavelet functions are 
concerned with multiplicity r = 2. In this paper we use the 
multiwavelet constructed by Geronimo, Hardin and 
Massopust [11], which we shall refer to as GHM system.  

The GHM scaling functions have short support, has 
second order approximation, the translates of the scaling 
functions are orthogonal and both scaling functions and the 
wavelets are symmetric. 
The Chui and Lian’s (CL4) and SA4 multiwavelet belong 
to the class of multifilters for which the scaling and wavelet 
functions are symmetric/antisymmetric pairs [12]. The CL4 
multiwavelet has the highest possible approximation order 
of 3 for its filter length.  
 The analytical part of DMWT can be implemented as a 
level transformation or two channel matrix filter bank. The 
two input data streams are lowpass ( kH ) and highpass 
( kG ) filtered and downsampled by 2. At the next level the 
two output lowpass data streams from the previous level 
are again lowpass and highpass filtered and downsampled 
by 2. In order to start this cascade algorithm one must 
preprocess the original scalar data to get vector input. This 
preprocessing or prefiltering is going to be investigated in 
the next section. For image data each level of the DMWT 
is performed on the rows of preprocessed image data and 
then on its columns. 
 
 
3.  PREPROCESSING OR PREFILTERING 
 

One of the main challenges to the application of 
multiwavelets is the problem of multiwavelet initialization 
(or better known as pre-filtering in the literature).  In the 
case of scalar wavelets, the given signal data is usually 
assumed to be the scaling coefficients that are sampled at a 
certain resolution, and hence, we can directly apply 
multiresolution decomposition on the given signal.  
Unfortunately, the same technique cannot be employed 
directly in the multiwavelet setting.  Some processing has 
to be performed on the input signal prior to multiwavelet 
decomposition.   
 The main idea of pre-filtering is to obtain the multiple 
(vector) input streams kv ,0 from a given scalar input signal 

kf , so that the vector streams can be operated on by the 
matrix filters. This preprocessing is a linear operator that 
maps kf  to the starting coefficients kv ,0 . This operator 

usually takes the form of a filter and hence the operation is 
often called prefiltering. In our case r = 2 and the two data 
streams enter the multifilter. If the scalar data is of length N 
and the prefiltering produces N, 2 x 1 vectors it is said to 
be an oversampling scheme. On the other hand, if the 
prefiltering produces N/2, 2 x 1 vectors the result is a 

critical sampling scheme. In critical sampling case a 
prefilter partitions the data into a sequence of 2 vectors and 
applies the filter Q , which is defined by a sequence of 2 x 
2 matrices nQ .  
Thus, 
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To recover the signal after reconstruction the output 

coefficients have to be postprocessed. The postfilter P  
that accompanies the prefilter Q  satisfies  IPQ = where I 
is the identity filter. So, if one applies a prefilter, DMWT, 
inverse DMWT and postfilter to any sequence the output 
will be identical to the input. The various prefilters 
GHMInter, CLInter, Haar, Oversampling considered are 
given in [12]. 
 
 
4. SPECKLE REDUCTION THROUGH 
THRESHOLDING OF MULTIWAVELETS 
COEFFICIENTS 
 

As discussed in the previous section, the speckle noise 
typically can be modeled as a multiplicative i.i.d. Guassian 
noise. Logarithmic transformation of a SAR image converts 
the multiplicative noise model to an additive noise model. 
For a digitized SAR image, we define ),( kjy as the gray 
level (the observed image magnitude) of the ),( kj th pixel 
of the image. Hence, the pixel level of a SAR image can be 
written as  

 
xey =  

 
where x is the desired radiometric information, and e  is 
the multiplicative speckle noise. For logarithmically 
transformed SAR image, the speckle is approximately 
Gaussian additive noise, i.e., 

 
exy ~~~ +=  where )ln(~ yy = .  

In what follows y~ will represent a logarithmically 
transformed gray level (or intensity), y . If W is the 
multilevel DMWT, then a multiresolution representation is 
given by the equation 
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where      eWxWvyWw ~ and ,~ ,~ === ϖ  
The standard deviation of the noise in the 

multiresolution representation σ  is not known in advance 
and must be estimated from the data. 

To reduce the contribution of the smallest coefficients 
that contain mainly noise, a soft threshold [5] is applied to 
all the wavelet coefficients except those of the lowest scale. 
A soft threshold operation involves choosing a threshold 
λ , and applying the function 

 
     +−= ))(()( λwwsignwf                                 (6) 

 



to obtain the enhanced subband DMWT coefficients, ŵ . 
Finally, the speckle-reduced image is obtained from the 
synthesis part of the DMWT of the enhanced subband 
image )(wf . 

The central issue in a threshold procedure is the 
selection of an appropriate threshold. If this threshold is too 
small, the result is still noisy. On the other hand, a large 
threshold also removes important image features and thus 
causes a bias. The optimal threshold for subband j, 

optj,λ minimizes the mean square error of the result as 

compared with the unknown, noise free coefficients: 
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where jN is the number of coefficients in the subband 

j, λ,jw  is the vector of threshold noisy coefficients and 

jv is the vector of noise-free coefficients. As threshold 

value, we use the minimizer of the “Generalized Cross 
Validation” (GCV) function 
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where 0jN is the number of wavelet coefficients that were 

replaced by zero. This procedure does not need an estimate 
of the actual noise level, jσ . 

 
5. THE ALGORITHM 
 

The thresholding method of SAR image using DMWT 
can now be described using the following steps 

 
1. Logarithmically transform the SAR image i.e. compute 

the intensity SAR image. 

2. First pre-process all rows, then all columns of the row-
pre-processed data by a specific prefilter. 

3. Perform the 2D DMWT, by tensor product of two 1D 
DMWT, to level J. During each level the multiwavelet 
filter bank is applied first to the rows and then to the 
column of the low/low output from the previous step. 

4. Compute the threshold value for each sub-band 
through GCV function using equation (7). 

5. Apply soft thresholding to the DMWT coefficients 
obtained in step 3 using equation (6). No thresholding 
is performed on the low/low output of level J. 

6. Perform the inverse DMWT and exponential operation 
in order to acquire the final SAR image with an 
improvement in its radiometric quality. 

6. EXPERIMENTAL RESULTS 
 
To demonstrate the efficacy of the proposed method for 

speckle noise removal, we have tested the algorithm with 
two different cases. First, we use a simulated speckle image 

and then we applied the algorithm to a single look 256 x 
256, 256-gray-scale SAR 
 The simulated image as shown in Figure 2(a), contains 
two regions of intensity 150 and 200 on a background of 
intensity 80. The original image is multiplied by the 
Guassian distributed random variable with mean 1 and 
variance 0.068, shown in Figure 2(b).  We used GHM, CL4 
and SA4 with appropriate prefilters as described in the 
previous section. The matrix filter coefficients for each 
multiwavelet system were used in a 3-level (J = 3) DMWT. 
Filtered images are shown in Figure 2(c) and (d). 
 The multiwavelet coefficients are threshold with a 
threshold value computed for each subband (except of LL 
subband) and sub-levels through GCV method. A typical 
GCV curve is shown in Figure 5.  

Table 1 gives the value of the standard-deviation-to-
mean ratio values of the simulated image and SAR image. 
The low values of (std/m) and (log-std) indicates better 
speckle reduction.  
 Figure 3(a) and (b) represent one of the scan lines of the 
simulated image. The data was extracted from the 65th 
column to the 220th column at the 150th row of the image.  
 
7. CONCLUSIONS 

In this paper, we discussed the implementation of the 
Generalized Cross Validation (GCV) technique based 
thresholding of the Multiwavelet coefficients for the 
logarithmically transformed SAR image for speckle 
reduction. The algorithm suppresses the speckle noise in 
the homogeneous region and preserves the fine details such 
as edges and textures. Experimental results are encouraging 
and further work with Translation Invariant (TI) 
multiwavelets for SAR speckle reduction is envisaged. 
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Fig 2. Simulated Test Image.  a) Original Image containing two regions of intensity 150 and 200 on a background of 
intensity 80. b) Speckled Image by multiplicative noise with var=0.068 c) Processed Image with SA4+Haar d) Processed 
Image with CL+Inter 

Fig 3. One-dimensional data of Test Image.  a) Original Image and Speckled Signal extracted from 150th row b) 
Original Image and Processed Image with SA4+Haar 

(a) (b) 



 
 
 

 
 
 
 

Simulated Image std_dev/mean ratio Log(std_dev) (dB) 
Original Image 0.259 38.99 
GHM+GHMInter 0.122 17.38 
CL+CLInter 0.081 11.50 
SA4+Haar 0.086 12.35 
GHM+RR 0.113 16.12 
Cl+RR 0.096 13.78 

SAR Image std_dev/mean ratio Log(std_dev) (dB) 
Original Image 0.200 19.66 
GHM+GHMInter 0.092 8.86 
CL+CLInter 0.073 7.01 
SA4+Haar 0.088 8.50 
GHM+RR 0.103 10.02 
Cl+RR 0.102 9.91 

Fig 4. SAR  Image.  a) Original Image containing speckle. b) Processed Image  with SA4+Haar  

Fig 5. Typical GCV Curve of a sub-band of Multiwavelet Transform  

Table 1. Standard deviation to mean ratio and log standard deviation of Simulated and SAR Images 
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