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Abstract

Manual fingerprint classification proceeds by carefully
inspecting the geometric characteristics of major ridge
curves in a fingerprint image. We propose an automatic ap-
proach of identifying the geometric characteristics of ridges
based on curves generated by the orientation field called
orientation field flow curves (OFFCs). The geometric char-
acteristics of OFFCs are analyzed by studying the isomet-
ric maps of tangent planes as a point traverses along the
curve from one end to the other. The path traced by the
isometric map consists of several important features such
as sign change points and locations as well as values of
local extremas, that uniquely identify the inherent geomet-
ric characteristics of each OFFC. Moreover, these features
are invariant under changes of location, rotation and scal-
ing of the fingerprint. We have applied our procedure on
the NIST4 database consisting of 4,000 fingerprint images
without any training. Classification into four major finger-
print classes (arch, left-loop, right-loop and whorl) with no
reject options yields an accuracy of 94.4.%

1. Introduction

Fingerprint classification is a coarse level partitioning of
a large fingerprint database, where the class of the input
fingerprint is first determined and subsequently, a search
is conducted within the set of fingerprints belonging to the
same class as the input fingerprint. In this work, we classify
fingerprint images into 4 major classes in the Henry clas-
sification system [5]: arch, left-loop, right-loop and whorl.
The arch class can be further divided into two subclasses
consisting of the plain arch and tented arch. These 5 classes
of fingerprints in the Henry classification system are shown
in Figure 1. While the Henry classification system has many
classes, only 4, 5 or 7 classes have been used in an automatic
classification procedure. The reason for using only a small
number of classes is because the task of determining a fin-
gerprint class can be difficult. Important fingerprint features
that aid classification exhibit large variations, thus, making
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Figure 1. Five classes of fingerprints in the
Henry system: (a) left-loop, (b) right-loop, (c)
arch, (d) tented arch, and (e) whorl. Images
are from the NIST4 database [15].

the task of representing these features in an automatic sys-
tem challenging. Sometimes, even human experts label the
same fingerprint as being of different classes; for example,
700 fingerprints out of the 4,000 fingerprints in the NIST4
database [15] have two different class labels associated with
them.

2. Previous Work on Fingerprint Classification

A number of approaches have been developed for auto-
matic fingerprint classification. These approaches can be
grouped into five main categories: (i) approaches based
on singular points [6, 8], (ii) structure-based [1, 2, 3], (iii)
frequency-based [7], (iv) syntactic or grammar-based [11],
and (v) approaches based on mathematical models [10].
Hybrid methods combine at least two approaches in (i-v)
to arrive at a fingerprint classification algorithm (see, for
example, [2, 3]). Some of the hybrid methods have not
been tested on large databases; for example, Chong et al [3]
used 89 fingerprint images. Table 1 compares the classifica-
tion accuracies obtained by several fingerprint classification
methods reported in the literature.



Table 1. A comparison of classification accu-
racies (in %) of several fingerprint classifica-
tion methods in the literature. Reject rates
are also given in percentages.

Method No. 4 class 5 class Reject Rate
Cappelli et al [1] 1, 204 - 87.1

a
0.0

Chang & Fan [2] 2, 000 - 94.8 5.1

Chong et al [3] 89 - 96.6
b

0.0

Hong & Jain [6] 4, 000 92.3 87.5 0.0

Jain et al [7] 4, 000 94.8 90.0 0.0

Karu & Jain [8] 4, 000 91.4 85.4 0.0

Minut & Jain [10] 4, 000 91.2 - 0.0

Wilson et al [16] 4, 000 - 94.0
c

10.0

Dass & Jain 4, 000 94.4 - 0.0

a using the natural distribution of fingerprints
b based on the 5 classes - double loop, whorl, left-loop, right-loop
and arch
c using the natural distribution of fingerprints; equal distribution
of each class yields accuracies of 84 − 88%.

The most natural topology for analyzing fingerprint im-
ages is the topology of curves created by the ridge and val-
ley structures. This necessitates the use of methods from
differential geometry for the analysis of properties of the
curves, or curve features. The approach presented in this
paper is a combination of the structure-, syntactic- and
mathematical-based approaches. For a given fingerprint im-
age to be classified, the algorithm first extracts an orienta-
tion field for the fingerprint image. Next, orientation field
flow curves (OFFCs) are generated based on the estimated
orientation field. There are two advantages of using OFFCs
for fingerprint classification: (i) unlike ridge curve extrac-
tion, breaks and discontinuities in the OFCCs are avoided,
and (ii) the OFFCs are free from small scale ridge oscilla-
tions. Each flow curve is then labelled as either loop (left
or right), whorl or arch depending on its intrinsic geomet-
ric structure. Rigid mathematical models as in [10] are not
adequate for representing all aspects of variability of the
OFFCs. We develop robust procedures based on differen-
tial geometry for labelling the OFFCs. The geometric char-
acteristics of OFFCs are analyzed by studying the changes
occurring in the tangent space as a point traverses along a
OFFC from one end to the other. The tangent space at each
point along an OFFC is isometrically mapped to a refer-
ence tangent space. The path traced by the isometric map
consists of several important features such as sign change
points, locations as well as values of local extremas, that
uniquely identify the inherent geometric characteristics of
each OFFC. Moreover, since the methodology is derived
from differential geometry, these features are invariant un-

Orientation Field
Estimation Generation of OFFCs

Determine
OFFC labels

Determine
Fingerprint class

Fingerprint class: 

W, L, R, A

Input fingerprint 

Figure 2. Steps involved in determining the
class of a fingerprint.

der changes of location, rotation and scale. Based on these
features, we are able to label the OFFCs into four classes,
namely, left- and right-loops, whorl and arch. Subsequently,
the labels the OFFCs are processed based on syntactic rules
to arrive at a fingerprint class. We have applied our proce-
dure on the NIST4 database consisting of 2,000 fingerprint
images. Classification into 4 classes of the Henry system
results in an accuracy of 94.4% with no reject options. We
note that our classification accuracy is comparable to the
ones reported in the literature (see Table 1).

3. General Methodology

3.1. Generating Orientation Field Flow Curves

Our approach to fingerprint classification involves four
major steps: (i) the extraction of the orientation field for the
given fingerprint image, (ii) generation of orientation field
flow curves (OFFCs), (iii) labelling of each OFFC into the
four classes: left- and right-loops, whorl and arch, and (iv)
an overall classification of the fingerprint image into one of
the four classes based on syntactic rules. Figure 2 shows the
steps involved in classifying a fingerprint image.

Consider a site s in a fingerprint image I with r rows
and c columns. The orientation field of I gives the direc-
tion of the ridge flow in a local neighborhood around s for
all s ∈ I. The value of the orientation at site s, os, is a
vector (cos θs, sin θs)

T where θs is the angle of the flow
with respect to the horizontal axis. Opposite flow directions
are equivalent, and therefore, θs can only be determined
uniquely in (−π/2, π/2). There are many algorithms in the
literature that find orientations based on the gray intensities
of a given image. However, the orientation field estimation
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Figure 3. Variations in whorl curves: OFFCs
(white curves) labelled as whorls in panels (a-
c) with corresponding graphs of cos γj versus
j in panels (d-f)

algorithm reported in [4] was specially designed for finger-
print images taking into account the smoothness of the ori-
entations at sites in the image that are close to each other.
Hence, a more robust orientation field estimate results (see
[4] for further details). The orientation field estimate is ob-
tained for sites s = (x, y) in I where x and y are integers
such that 1 ≤ x ≤ r and 1 ≤ y ≤ c. In order to obtain
the value of the ridge orientation at any site s = (x, y) in
I, we adopt an interpolation scheme. Let m and n be inte-
gers such that m = [x] and n = [y], where [g] stands for
the greatest integer less than or equal to g. The orientation
vector at site s = (x, y) is given by os = (cos θs, sin θs)

T

where

θs =
1

2
tan−1

∑
(i,j)∈{0,1}2 ui vj sin 2θ(m+i,n+j)

∑
(i,j)∈{0,1}2 ui vj cos 2θ(m+i,n+j)

, (1)

with u0 = m + 1 − x, u1 = 1 − u0, v0 = n + 1 − y, and
v1 = 1 − v0. The interpolation scheme in (1) is a weighted
average of orientation field values at the integer sites (m,n),
(m,n + 1), (m + 1, n) and (m + 1, n + 1). The weights
are given by uivj with (i, j) taking values in {0, 1}2. The
interpolation scheme in (1) yields a value of orientation for
all sites s ∈ I while retaining the original values at the
integer sites.

An OFFC with a starting point s0 ∈ I can be defined
iteratively as

sj = sj−1 + dj · lj · osj−1
(2)

for j = 1, 2, . . . , n; dj , with values in {−1,+1}, is the flow
direction from sj−1 to sj , lj is the length of the line seg-
ment from sj−1 to sj , and osj−1

is the orientation vector at
site sj−1. The point sn denotes the termination point of the
OFFC curve, which is achieved when either (i) the bound-
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Figure 4. Variations in left-loop curves: OF-
FCs (white curves) labelled as whorls in pan-
els (a-c) with corresponding graphs of cos γj

versus j in panels (d-f)

aries of the image is reached, or (ii) when n exceeds a pre-
specified constant N0. The lengths lj specify the sampling
interval of the OFFC. In this paper, we select a common
lj for all the OFFCs, that is, lj = l, say. Each point s0

generates two segments of an OFFC which are obtained by
fixing d1 first at +1, and then at −1, so that the points sj

in (2) trace opposite directions. The starting points s0 are
selected in the following way: Let rstart, rend, cstart and
cend determine the top, bottom, left and right boundaries
of the fingerprint pattern area, and w denote the sampling
width. The points s0 are selected such that

s0 = (rstart + k w , cstart + l w), (3)

with either (i) k = 1, 2, . . . , [ rend−rstart

w
] and l =

[ cend−cstart

2w
] or, (ii) k = [ rend−rstart

2w
] and l =

1, 2, . . . , [ cend−cstart

w
]. In other words, the starting points

are sampled along the horizontal and vertical lines that pass
through the midsection of the fingerprint pattern area. Fig-
ure 2 shows how the OFFCs are generated given a finger-
print image. We proceed with the labelling of each OFFC
curve using methods developed from differential geometry
[14] in the next section.

3.2. Tangent space isometric maps of OFFCs

Our goal in this section is to label each OFFC into one
of the four classes based on their global geometric shapes:
left- and right-loops, arch and whorl (see the left panels of
Figures 3, 4, 5 and 6 for examples of each class). Obtaining
explicit mathematical models for the global geometric char-
acteristics of OFFCs will often be too rigid to adequately
represent all possible variations of these curves. Therefore,
we adopt a non-model based approach here. We discuss
several robust features of the OFFCs that allow us to infer
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Figure 5. Variations in right-loop curves: OF-
FCs (white curves) labelled as whorls in pan-
els (a-c) with corresponding graphs of cos γj

versus j in panels (d-f)

the underlying class based on methods of differential geom-
etry.

Let α(t) ≡ (α1(x(t), y(t)), α2(x(t), y(t)))T with t ∈
[t0, t1] denote a curve in the R2 plane passing through
the point (x0, y0). The tangent vector at (x0, y0) is
(α

′

1(x0, y0), α
′

2(x0, y0))
T , where the derivative is taken

with respect to t. We define V(x0,y0) to be the translation

of (α
′

1(x0, y0), α
′

2(x0, y0))
T so that the starting point of

V(x0,y0) is at the origin (0, 0). The tangent plane, T(x0,y0),
at point (x0, y0) for the curve α is a one-dimensional plane
generated by the tangent vector V(x0,y0), that is,

T(x0,y0) = {u · V(x0,y0) : u ∈ R}. (4)

In other words, T(x0,y0) is the set of all tangent vectors at
the point (x0, y0) translated to the origin.

Any mapping of points in the plane, F : R2 → R2 has
a tangent map F∗ that carries each tangent vector v at point
p to a tangent vector F∗(v) at point F (p). The map F is
said to be an isometry if it preserves distances, that is,

d(p, q) = d(F (p), F (q)), (5)

where d is the Euclidean distance in R2. In the case of
an isometric map, the tangent map, F∗, is very simple to
describe: each tangent vector v at p is “rotated” in exactly
the same way by F∗, and translated to the point F (p). In
other words, the tangent map F∗, modulo translations, can
be uniquely described by a rotation angle γ.

For a given OFFC, we compute the isometric maps as
follows: Let one end point of the curve be denoted by p0

and the other by pN . Our analysis is not affected by which
end is selected as p0. Define the chord vector V1 ≡ 1

δ
(x1 −

x0 , y1 − y0)
T , where p0 ≡ (x0, y0), and p1 ≡ (x1, y1)

is a point on the curve at a distance δ from p0. The plane
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Figure 6. Variations in arch curves: (OFFCs
(white curves) labelled as whorls in panels (a-
c) with corresponding graphs of cos γj versus
j in panels (d-f)

spanned by V1 is denoted by T1, and the unit vector by e1 ≡
Vj/||Vj ||. Subsequent chord vectors, Vj , are obtained as
Vj ≡ 1

δ
(xj − xj−1 , yj − yj−1)

T , where pj ≡ (xj , yj) are
points on the curve at a distance δ apart for j = 2, . . . , N ,
with the spanned plane denoted by Tj , and the unit vector
by ej ≡ Vj/||Vj ||. Note that Tj coincides with the tangent
plane of some points ξj on the OFFC which lies between
pj−1 and pj , for j = 1, 2, . . . , N . With T1 as the reference
plane, we obtain the isometric maps F∗s in terms of the
rotation angles γj that is needed to rotate the plane T1 to
match Tj , with γ1 ≡ 0. The feature we consider is the
cosine of γj which can be obtained as

cos γj = e1 • ej (6)

for j = 1, 2, . . . , N , where • is the Euclidean inner product
on R2. The right panels of Figures 3, 4, 5 and 6 show the
graphs of cos γj versus j as the point on an OFFC traverses
from p0 to pN for the classes whorl, right-loop and arch,
respectively.

3.3. Salient Features Of Isometric Maps

Figures 3-6 give the isometric map plots obtained for the
different classes of OFFCs: left-loop, right-loop, whorl and
arch. Salient features of the graphs are (i) the number and
locations of sign-change points, and (ii) the number and lo-
cations of local maximums and minimums. These features
are robust with respect to variations within each curve class.

Figures 3 (b), (d) and (f) give the graphs of the isomet-
ric maps for several different OFFCs of type whorl (indi-
cated by a white curve in the corresponding left panels).
The salient features (comparing Figures 3 (b), (d) and (f))
of the isometric map plots include: (i) several (more than
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Figure 7. OFFCs for the five different classes
(a) left-loop, (b) right-loop, (c) arch, (d) tented
arch, and (e) whorl. All these fingerprints
have been correctly classified.

one) sign-change points with local maximum and minimum
values of +1 and -1, respectively, between locations of sign-
change points. In Figures 4 (b), (d) and (f), we have plotted
the graph of the isometric map for different left-loops of
OFFCs in the corresponding right panels. The salient fea-
tures of left-loop class remain the same: one sign-change
point followed by one local minimum value of -1. Figures 5
(b), (d) and (f) give the isometric map plots of OFFC curves
that are right-loops. Note that, similar to the left-loop, the
features of the right-loop include one sign-change point fol-
lowed by one local minimum value of -1. In the case of
an arch type, the salient features include either (i) no sign-
change points, or (ii) exactly one sign-point with the value
of the local minimum far from -1. In order to determine
whether a local maximum is close to or far way from +1,
we use a threshold parameter, λ, 0 < λ < 1. The value of
a local maxima is determined to be close to +1 if it exceeds
λ. Similarly, the value of a local minimum is determined to
be close to -1 if its value falls below −λ.

Note that features of the isometric map plot cannot dis-
tinguish between a left- and a right-loop. Once an OFFC is
determined to be of type loop, a further test is necessary to
classify the OFFC as either a left- or a right-loop. In order
to do this, we write each chord vector Vj ≡ (V x

j , V y
j )T ,

and define Uj = V x
j · V y

j . Left-loops correspond to sign
changes of Uj from +1 to -1 and back to +1, whereas right-
loops correspond to sign changes of Uj from -1 to +1 and
back to -1.

3.4. Fingerprint Classification

Let NT denote the total number of sampled OFFCs. We
denote by Nw , Nl , Nr , Na to be the number of OFFCs la-
belled as whorl, left-loop, right-loop and arch (Nw + Nl +

(a) Input image (b) Orientation field (c) OFFCs

(d) Input image (e) Orientation field (f) OFFCs

Figure 8. Noise in fingerprint images leading
to errors in classification. The true and as-
signed classes of the fingerprints in the top
(bottom) panels are left-loop and arch (left-
loop and whorl), respectively.

Nr +Na = NT ). We select pre-specified threshold parame-
ters λw, λl and λr to filter out noise in the labelling process.
Our fingerprint classification procedure is described as fol-
lows: If Nw ≥ λw, the fingerprint is assigned the class
“whorl”; otherwise, we go to the next stage and consider
the values of Nl, Nr and Na. If Nl ≥ λl and Nr < λr,
the fingerprint is classified as “left-loop”; if Nl < λl and
Nr ≥ λr, the fingerprint is classified as right-loop. If both
Nl < λl and Nr < λr, the fingerprint class assigned is
“arch”.

4. Experimental Results

The methodology presented in the previous sections
were validated on the NIST 4 fingerprint database [15]. The
NIST 4 database contains 2,000 8-bit gray scale fingerprint
image pairs, for a total of 4,000 images. Each image is 512-
by-512 pixels with 32 rows of white space at the bottom and
is classified into one of the following five classes: arch (A),
left-loop (L), right-loop (R), tented arch (T) and whorl (W).
The database is evenly distributed over the five classes with
800 fingerprints from each class. For our classification pro-
cedure, we combined classes “arch” and “tented arch” into
a single “arch” class. The orientation field estimate was
obtained using the approach described in [4].The estimate
of the orientation field was obtained for the central part of
the fingerprint image, leaving out a boundary of 50 pixels
along each side of the image, that is, rstart = cstart = 51
and rend = cend = 470 (see Section 3.1). For obtaining
each OFFC, we selected a step size of l = 5 pixels.

The threshold parameters for classification λw, λl and λr

were fixed at 2, 2 and 1, respectively. The value of λ was
selected to be 0.90. The classification results are presented



Table 2. Classification results of fingerprints
in the NIST4 database into four classes: A, L,
R, and W

Assigned Class
True A L R W Total Accuracy (%)

A 797 2 1 0 800 99.62
T 781 19 0 0 800 97.62
L 63 730 1 6 800 91.25
R 75 4 720 1 800 90.00
W 12 23 18 747 800 93.34

in Table 2 with no reject option. For fingerprints that have
two class labels, we determined that the assigned class is
correct if it is one of the true labels. The overall accuracy of
the classification procedure is obtained to be 94.4%. From
Table 2, we see that the best classification was obtained for
the class “arch” while the worst classification rates were ob-
tained for the classes left-loop and right-loop. We note that
our method of classification with no reject option achieves
an accuracy that is comparable to the ones reported in the
literature. Figure 7 shows the OFFCs for the five fingerprint
classes in the Henry system shown in Figure 1. All these
fingerprints have been correctly classified.

Sources of errors in our classification procedure can be
assigned to one of the following factors. Spurious or missed
patterns in the orientation field estimate, due to presence of
random cuts and ink smudges in the fingerprint image, re-
sult in OFFCs with erroneous labels. Non-uniform illumi-
nance at various regions of the fingerprint image severely
distorts the ridge-valley structures and makes the extraction
of a correct orientation field difficult (see Figure 8). Also,
some left and right-loop fingerprints have a very small loop
areas which are not detected by the extracted orientation
field; these fingerprints are misclassified as arch.

5. Summary and Conclusions

An approach for identifying the geometric characteris-
tics of OFFCs using graphs of tangent space isometric maps
is developed. Salient features of the graphs are robust with
respect to variations within each class of loops, whorls and
arches, and are invariant under changes in translation, ro-
tation and scaling. Left- and right-loops are distinguished
using the sign changes that occur for the component-wise
product of the tangent vectors. The class of a fingerprint is
determined from the labels of each OFFC. Our classifica-
tion procedure achieves a classification accuracy of 94.4%,
a rate comparable to the ones reported in the literature. Fu-
ture work will include detecting the smaller loop areas and
classifying fingerprints into five Henry classes: left-loop,
right-loop, whorl, arch and tented arch.
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