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Abstract

We propose a novel probabilistic framework that com-
bines information acquired from different facial features for
robust face recognition. The features used are the entire
face, the edginess image of the face, and the eyes. In the
training stage, individual feature spaces are constructed us-
ing Principle Component Analysis (PCA) and Fisher’s Lin-
ear Discriminant (FLD). By using the distance in feature
space (DIFS) values of the training images, the distribu-
tions of the DIFS values in each feature space are com-
puted. For a given image, the distributions of the DIFS
values yield confidence weights for the three facial features
extracted from the image. The final score is computed using
a probabilistic fusion criterion and the match with the high-
est score is used to establish the identity of the person. A
new pre-processing scheme for illumination compensation
is advocated.

1. Introduction

Automatic face recognition is a challenging problem in
computer vision. Computers that recognise faces can be ap-
plied to a wide variety of problems, including criminal iden-
tification, security systems, and human-computer interac-
tions. In recent years, many different techniques have been
applied to this task, and there is considerable literature on
face recognition.

Here, we propose a novel probabilistic scheme for fusing
different facial features for robust face recognition. Facial
features of the face when considered along with the entire
face image provide cues for better discrimination. Our main
contribution is in formulating a mathematical framework to
integrate the information coming from multiple facial fea-
tures. The three facial features that we consider are the en-
tire face, the edginess image of the face [1, 2], and the eyes.
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The edginess image is robust to variations in illumination
while the eyes are robust to facial expressions and occlu-
sions. We use Principle Component Analysis (PCA) [3] in
conjunction with Fisher’s Linear Discriminant (FLD) [4, 5]
to encode the facial features in a lower-dimensional feature
space. Three individual spaces are constructed correspond-
ing to the three facial features. The Distance In Feature
Space (DIFS) values are calculated for the training images
in each of the feature spaces and these values are used to
compute the distributions of the DIFS values. The distri-
butions of the DIFS values play an important role in char-
acterizing the differences between imposters and true per-
sons. Given a test image, the three facial features are first
extracted and their DIFS values are computed in each fea-
ture space. Each feature provides an opinion on the claim
in terms of a confidence value which is measured by inte-
grating the DIFS distributions of each feature space w.r.t the
DIFS value computed in that feature space. The confidence
values of all the three features are fused for final recogni-
tion. The identity established by our fusion technique is
more reliable compared to the case when features are used
individually. As a preprocessing step, we also propose a
new Block Histogram Equalization (BHE) technique that is
quite effective in compensating for local changes in illumi-
nation. When tested on the standard FERET database with
variations in facial expressions and ambient illumination,
the proposed fusion method yields significant improvement
in final recognition accuracy over the accuracy achieved
with face only. The work proposed here is an extension
of our work in [2].

2. Feature Selection and Pre-Processing

In this section, we first explain the motivation for the
choice of the specific facial features that we have consid-
ered in this paper. This is followed by a novel illumination
compensation method which serves as a preprocessor.



2.1. Facial Features

Face recognition approaches that consider only the entire
face as a feature do not take into account just what other as-
pects of the face stimuli are important for recognition [7].
Utilizing complementary information should improve per-
formance. For our recognition algorithm, we have consid-
ered, in addition to the entire face image, two other features;
namely, the edginess image of the face, and the eyes. The
motivation for incorporating local features into a recogni-
tion system stems from the fact that it is possible for humans
to recognise a face from only parts of it.

The edginess image is a global facial feature that is rea-
sonably robust to illumination. It is a measure of the change
in intensity from one pixel to the next. To extract a good
edginess image map, we employ 1-D processing [1] along
orthogonal directions as follows. To detect the horizontal
component of edginess, a 1-D Gaussian filter is first used to
smooth the image horizontally. This helps in reducing the
effect of noise. The Gaussian smoothing filter is given by

g(x) =
1√
2πσ

e
−x2

2σ2 (1)

where σ is the standard deviation of the filter. A discrete
approximation of this filter appears in Table 1(a). A differ-
ential operator which is a first-order derivative of the 1-D
Gaussian function is used next in the orthogonal direction
(i.e., vertically) to find the horizontal component of edgi-
ness. The differential operator is given by

c(y) =
−y√
2πσ3

e
−y2

2σ2 (2)

and its discrete approximation is given in Table 1(b).

.0001 .0440 .054 .242 .3989 .242 .054 .0440 .0001

(a)
.0005 .0133 .108 .242 0.0 -.242 -.108 -.0133 -.0005

(b)
Table 1. Filter coefficients for a typical (a) 1-D Gaussian

filter, and (b) Differential operator.

(a) (b) (c)

Figure 1. (a) A gray-scale face image, (b) it’s edginess

image, and (c) the cropped eyes.

The vertical component of edginess is computed in a
similar manner by carrying out the above steps in the or-
thogonal direction. The final edginess image is obtained
by taking the absolute sum of the horizontal and the verti-
cal components. Figure 1 shows a gray-scale face image,
the corresponding edginess image, and the extracted eyes.
Note that the edginess image is also a gray-valued image.

2.2. Intensity Normalization

A face recognition system must recognize a face from
it’s novel image despite variations in illumination. Unfortu-
nately, till todate, no revolutionary solution exists for the in-
tensity normalization problem. However, approaches have
been proposed to alleviate the effect of illumination varia-
tions [8].

We propose a simple Block Histogram Equalization
(BHE) technique for illumination compensation. We as-
sume that a reference image taken under well-controlled
lighting conditions is available. Let X and Y be the in-
put and the reference images, respectively, of size N × N

pixels. The goal is to bring the illumination level of the in-
put image X to that of the reference image Y by applying
BHE. Consider a block image BI from the input image X
with pixel locations ranging from 1 to M and also a block
image BR from the reference image Y at the correspond-
ing pixel locations (Figure 2). We would like to apply his-
togram modification to the input image block BI to make
the pixel intensity distribution of BI equivalent to the pixel
intensity distribution of BR.

Figure 2. Block histogram equalization. In each image

pair, the left one is the input image while the right one is

the reference image.

Consider the input block image (i.e., BI ) with pixel
value x ≥ 0 to be a random variable with probability den-
sity function px(x) and cumulative probability distribution
Fx(x) given by Fx(x) =

∫ x

0 px(u)du. Let the reference
block image (i.e., BR) with pixel intensity y ≥ 0 be a ran-
dom variable with probability density function py(y) and
cumulative probability distributionFy(y) given by Fy(y) =
∫ y

0
py(u)du. The final output block imageBO with pixel in-

tensity value z ≥ 0 should have the density function py(y)
and cumulative distribution Fy(y) and is given by

z = F−1
y [Fx(x)]. (3)

The histogram modified block image intensity values are



scaled with a windowing filter H is given by

BO(n,m) = BO(n,m)H(n,m) 1 ≤ n,m ≤M (4)
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(5)
By simultaneously shifting the blocks in both the hori-

zontal and the vertical directions in steps of M
2 + 1 pixel

locations (as shown in Figure 2), and adding pixel inten-
sity values in overlapping regions, we arrive at the final im-
age Z. The intensity changes are smoothed out across ad-
jacent blocks. The blocks are overlapped to avoid edges
and patches from appearing in the illumination compen-
sated image. The window H is defined such that the sum
of the weights in the overlapping region is 1. In Figure
3, we give a few examples of images taken under differ-
ent illumination directions and the corresponding intensity
normalized images using our method. The reference image
was kept the same for all the images. The proposed BHE in-
tensity normalization technique is simple to implement and
effective.

(a) (b)

(c) (d)

Figure 3. Images before and after intensity normalization

with BHE.

3. Eigen and Fisher Analysis

In this section, we discuss Eigen and Fisher theory in
brief. The analysis here is common to all the facial features
considered in this paper. Let fi,m denote the N2 element
training vector representing the mth image (size of N×N )
of the ith person. Let the average image of the entire data
set be ψ and the covariance matrix be C [3]. Using PCA,
the weight vector corresponding to the mth training image
φi,m of the ith person can be derived as wi,m = ET

pcaφi,m

whereEpca contains the significant eigenvectors ofC given
by Epca = [e1, e2, ........, eK

′ ]. The average weight vector
of the ith person is given by wi = 1

M

∑M

m=1E
T
pcaφi,m

Fisher’s Linear Discriminant (FLD) [5] is a class-specific
method to shape the scatter in order to make it more re-
liable for classification. Mathematically, FLD selects the
projection matrix Efld in such a way that the ratio of the
determinant of the between-class scatter matrix Sb to the
within-class scatter matrix Sw of the projected samples is
maximized [5]. We give as input to the FLD the reduced
dimension weight vector derived from PCA. The projection
matrix Efld is chosen as

Efld =
arg max

E
′ | E′T

SbE
′ |

| E′T
SwE

′ | (6)

The final projection matrix Eopt is given by ET
opt =

ET
fldE

T
pca. The final mean weight vector corresponding to

the ith person is then derived as w
′

i = 1
M

∑M

m=1E
T
optφi,m

In the recognition stage, a new test image feature γ is
transformed into its respective feature space and the weight
vector is derived as w = ET

opt(γ−ψ). The simplest method
for determining which class provides the best description
of the test image is to find the class j that minimizes the
Distance In Feature Space (DIFS) value computed as

εi =‖ (w − w
′

i) ‖ 1 ≤ i ≤ I (7)

The test image is classified as belonging to class j if the
minimum value corresponds to εj and is below some chosen
threshold θ.

4. Recognition by Fusion

In this section, we propose a probabilistic fusion strategy
to integrate information coming from multiple facial fea-
tures. To assign confidence weights, we propose to compute
the distributions of the DIFS values in each feature space.
The distributions are calculated empirically from the train-
ing data as explained below.

4.1. DIFS Distributions

As will be shown, the DIFS distributions are very useful
in characterising how an imposter will differ from the true
person.

In order to simplify the analysis, we consider a single
feature (say) face. After constructing the face space using
PCA and FLD (as discussed in Section 3), the training data
itself is used to compute the DIFS distributions. The train-
ing images are transformed to the face space and their DIFS
values are computed w.r.t. all the identities in the database.
Let εα (a random variable with density function fα(εα))



represent the DIFS values between an individual’s images
and his own weight vector. Thus, εα describes the distribu-
tion of the DIFS values for a true person. Without loss of
generality, we assume that for a given individual, ε1, ε2,....,
εI are the DIFS values arranged in an increasing order and
that these are statistically independent. Let εi (a random
variable with density function fi(εi)) denote the DIFS value
at rank i. For a given individual, the relative difference in
the DIFS value at rank i, defined as the difference between
the DIFS value at rank i to his/her own DIFS value is

∆i = εi − εα 1 ≤ i ≤ I (8)

Note that I is the total number of individuals/identities in
the database. The DIFS distribution fi(∆i) at rank i is

fi(∆i) =

∫

∞

−∞

zi(εi,∆i) dεi (9)

where

zi(εi,∆i)=
I !

(I − i)!(i− 1)!
F (εi)

i−1[1−F (εα)]I−if(εi)f(εα)

Here, zi(εi,∆i) describes the joint distribution of the ith

rank DIFS value (i.e., εi) and its distance from the true per-
son’s DIFS value (i.e., εα). The term f(εi) is the proba-
bility density function of the absolute DIFS value at rank
i and F (εi) is the corresponding distribution function. For
more details on the distribution of distances, see [9]. Since
closed form expressions for f(εi), f(εα), F (εi), and F (εα)
are not available for the problem on hand, we derive fi(∆i)
and f(εα) empirically by directly using the DIFS values
computed from the training dataset. The mean value of the
DIFS distributions fi(∆i) increases with rank i which im-
plies that an imposter at higher ranks is quite different from
the actual person in terms of the DIFS values.

4.2. Recognition

The confidence weights of the identities are computed
according to the DIFS values and the positional ranking in
the feature space in which they appear. The three features
(face, edginess, and eyes) are assumed to be independent.
We make this approximation for mathematical convenience.
The weight to be assigned to rank i depends on the posi-
tional ranking as well as the proximity of the DIFS value at
rank i with the top rank DIFS value.

When a new test image γ arrives, it’s DIFS values
ε
′

1, ε
′

2, ...., ε
′

I are arranged in an increasing order (in the re-

spective feature spaces). Let εα
′

denote the DIFS value for
the top rank in the face space. The relative DIFS values ∆

′

i

are computed using equation (8). The confidence weight
assigned to the identity at rank i is computed as

Pface(i) =
[

Pi(∆
′

i) Porder(i)
]

face
1 ≤ i ≤ I (10)

where Pi(∆
′

i) describes how close the ith rank DIFS value
is to the top rank and

Pi(∆
′

i) =

∫

∞

∆
′

i

fi(∆i) d∆i (11)

Note that for a feature the top rank identity need not always
be the correct identity. For example, let us assume that the
3rd rank identity is the actual person. Then, the DIFS values
for rank 1 and 2 cannot be much less than the DIFS value
at rank 3 (i.e., ∆

′

2 and ∆
′

3 will be small). Depending on
the DIFS value at rank 3 and the distribution of f3(∆3), the
weight assigned to the 3rd rank could even be higher than
the weight assigned to the 2nd rank identity. This allows us
to accommodate higher-ranked identities also.

The term Porder(i) assigns an appropriate weight to an
identity depending on the positional ranking as well as the
top rank DIFS value. If the top rank DIFS value is very
small, then he/she is most likely the actual identity. Hence,
Porder(i) should fall very sharply as rank i increases. If
the top rank DIFS value is large, then the top person may
not be the actual identity, and hence the confidence weight
should fall gradually to accommodate even individuals at
higher ranks. Thus, depending on the top rank DIFS value,
we give relative weightage to the person at rank i. We define
Porder(i) using a Gamma distribution with λ = 1 and β=1
as

Porder(i) =
β

γ(λ)

(

(i− 1)

θ

)(λβ−1)

e(−
(i−1)

θ
), θ =

1

p
,

(12)

1 ≤ i ≤ I and p =

∫

∞

ε
′

1

fα(εα) dεα

In the above equation, ε
′

1 is the DIFS value at rank 1. For
p=1, the Gamma curve falls very sharply compared to other
values of p. When the top rank identity is not a genuine one,
the combined effect of Pi(∆

′

i) and Porder(i) is to accom-
modate identities at even higher ranks. In an exactly similar
manner, we compute Pedge(i) and Peye(i) for the other two
features. If I1, I2, ....., II are the identity indicators of the
individuals in the database, then the final confidence weight
of an identity Ii is obtained by multiplying the confidence
weights contributed from each feature space of that identity

P (Ii) = Pface(Ii)Pedge(Ii)Peye(Ii) (13)

Here, Pface(Ii), Pedge(Ii), and Peye(Ii) are confidence
values acquired from each feature for the identity Ii. The
identity ID(γ) for a given individual γ is determined by the
following criterion:

ID(γ) =

{

Ik if P (Ik) > τ

Imposter otherwise

where P (Ik) = max{P (I1), P (I2), ..., P (II )} (14)

The threshold τ is chosen such that an untrained person
should not be recognised at all.



5. Experimental results

In this section, we demonstrate the performance of the
proposed method on the standard FERET database. A com-
monly used performance measure for face recognition is the
Cumulative Match Scores (CMS), i.e., the recognition ac-
curacy in the top n ranks. The required facial features were
cropped with reference to the eye locations which were pro-
vided with the dataset. The eye locations were used to
account for rotation and scaling, when necessary. All im-
ages were intensity normalized using the BHE technique
described in Section 2.2.

Probe Category Gallery size Probe set size

FaFb 1196 1195
duplicate I 1196 194

FaFc 1196 722
duplicate II 1196 234

Table 2. Gallery and probe information for FERET.
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Figure 4. CMS plots for (a) the FaFb probe set, (b) dupli-

cate I, (c) the FaFc probe set, and (d) duplicate II.

The FERET database contains 14,126 images compris-
ing of 1,199 individuals. Since the images are acquired
during different photo sessions, this dataset contains sig-
nificant variations in pose, illumination and facial expres-
sions. We have compared our system performance with
the FERET evaluation results [6]. The FERET evaluation
in [6] provides a comprehensive picture of the state-of-the-
art in face recognition. In Table 2, details of all the four
probe categories are given. The FA images (regular frontal

faces of persons) were used as the gallery set, where as four
categories of probe sets were used to compare against the
gallery set. The first probe category was the FaFb probe set.
This indicates an alternative frontal image, taken seconds
after the corresponding FA images. The second probe cat-
egory contained all duplicate frontal images in the FERET
database and is referred to as the duplicate I probe set. The
third category of probe set is the FaFc set which contains
images taken on the same day but with different camera and
illumination. The fourth category of probe set is called the
duplicate II set. These images are duplicates of FA images
but taken at least one year between the acquisition of the
gallery images (FA) and the probe images.

When tested on all the probe categories, the CMS plots
for the top n ranks are shown in Figure 4. In Table 3, we
have compared the performance of the proposed method
with the partially automatic face recognition algorithms that
appear in [6]. From Table 3, we observe that the perfor-
mance of the proposed method is comparable to the best
reported results. For the FaFb, duplicate I and duplicate
II probe sets, our method has better accuracy compared to
others. On the FaFc probe set, we come second.
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Figure 5. FAR and FRR plots for the FERET database

using (a) face only, (b) edginess only, (c) eyes only, and

(d) fusion.

The performance of our system was next tested on un-
trained people to check how well it rejects unknown per-
sons. This is done using the False Acceptance Rate (FAR)
and the False Rejection Rate (FRR) curves. FAR is the
probability that an untrained person is falsely accepted as
a known identity while FRR is the probability that a known



Probe set Recognition accuracy at rank 1 [%]
Fusion UMD 97 USC MIT 96 Baseline cor Baseline EF

FaFb 98.3 96.5 95 94.8 82.5 79.5
duplicate I 68 46 58 57 35 42

FaFc 59 59 82 32 7 18
duplicate II 54 21 46 34 16 22
Table 3. Recognition accuracy for different algorithms with the FERET database.

person is falsely rejected as an unknown person. The rela-
tion between the two rates is controlled by the acceptance
threshold of the system. If the threshold is set to a very high
value, there will be no false acceptances (i.e., FAR = 0), but
it will be impossible to accept even a true (known) person
who is in the training data (i.e., FRR = 100%). Setting too
low a threshold will cause the situation to reverse. The value
of FRR and FAR at the point where the plots cross is called
the Equal Error Rate (ERR). System performance can be
specified in terms of the ERR value. For a good recognition
system, the ERR value should be as small as possible.

For the FERET database, when our method was tested
against trained and untrained individuals, the FAR and FRR
plots for face, edginess, eyes, and fusion are shown in Fig-
ure 5(a), (b), (c), and (d), respectively. The system was
trained with 482 individuals out of the 1,199 individuals in
the database. A total of 1,446 images were used for train-
ing, 3 images per subject. To compute the FAR plots, 1,440
face images were used as probe images from the remain-
ing 717 untrained individuals. Initially, we fixed the ac-
ceptance threshold for each feature space and also for the
fusion method. For face, edginess, and eyes, the threshold
value is in terms of the top rank DIFS value, whereas for
the fusion method it is in terms of the final confidence value
of the top rank. We compute the error rate by testing on all
the probe images. The value of the error rate indicates the
ratio between the number of face images that are accepted
as known identities over the total number of images. Error
rates were computed for all the threshold values by varying
the threshold value from the lowest possible to the highest
possible value. While computing FRR, 304 untrained facial
images were used as probe images from 482 trained individ-
uals (i.e., known identities) and we computed the error rates
for all the threshold values. From Figure 5, we observe that
the ERR values for face, edginess, and eye are quite high
(31%, 30%, 34%, respectively). In contrast, the ERR value
for the fusion method is much lower and is only 12%. Thus,
the fusion method is very useful in rejecting imposters.

6. Conclusions

We have described a system that uses different facial
features for robust recognition. The proposed probabilis-
tic fusion scheme combines information coming from the
face, the edginess image of the face, and the eyes. A

new algorithm for illumination compensation is also given.
The method has been validated by testing it on the FERET
database. It has been shown that fusion improves overall
recognition accuracy. The improvement is particularly sig-
nificant under facial occlusions, variations in facial expres-
sions, and illumination changes.
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