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Abstract units, that are characterized by the arm motion in a sir

gle 2-D plane (in 3-D space). HMM-based framework i

In this paper we present a novel framework to model a used for robust estimation the individual recognition unit
dynamic hand gesture by-dimensional vector that incor-  from the feature sequence. A sequence of recognition ur
porates both - the hand shape as well as the trajectory in- is interpreted as a meaningful gesture. However, exact
formation. We introduce the notion of ‘distance’ between limiting of recognition units is essential for good results
dynamic gestures to help choose a proper set of gestureKapuscinski [11] uses skin colour cues to extract the sha
for the gesture vocabulary. We also utilise inter-gesture dis- and orientation of the hand. This information is combine
tances for gesture recognition. We show encouraging re- with the hand motion estimates, and analysed using a ba
sults on a representative set of gestures selected accordinggf HMMs to recognise the gesture performed. The sy
to the above criteria. tem, however, is not very robust to background clutter, ar
structured noise. Miret al. [7] use coordinates of center

of the detected hand region as features to estimate gestu

1. Introduction A Task-Specific state transition machine is used to dete
and differentiate between static and dynamic gestures. C

. namic gestures are represented by a combination of Ca

In this paper, We propose a novel framewprk to model a sian space features (e.g., vector velocity) and polar spe
gesture as &-dimensional vector that combines the hand features (distance from, and angle subtended with the c

trajectory as well as hand shape information. This frame- ter of the trajectory), and recognised using an HMM-bas
work also allows _us_to properly ch_o_ose the gesture Vocabu_framework. Waket al. [9] describe hand shape using nor:
lary s0 as to maximize the recognition accuracy. malized Fourier descriptors. A radial basis function ne

A dynamic hand gesture comprises a sequence of handy o js ysed to map the observed hand shape to a set of 1
shapes with associated spatial transformation parameterﬁredefined shapes. This shape information along with m

(such as translation, rotation, scaling/depth variations etc.)tion information (of the centroid of the binary hand image
that describe the hand trajectory. Gesture recognitioniS given to an HMM bank to estimate the gesture. Yeasin
schemes can be broadly classified into two groups. In theal. [13] extract temporal signature of hand motion. Lapla
first approach, a gesture is.modeled as a time sequence Oéian of Gaussian (LoG) operator is used in temporal di
states. Here, one uses Hidden Markov models (HMM), iy 't estimate motion break-points. Gabor like quadr
discrete finite state machines (DFA), and variants thereofy, ¢ fiters are used over portions of uniform motion, to ex

for gesture recognition. In the second approach, one Useg,qt the dominant motion component which is analysed
dynamic time warping to compensate for the speed varia-, ppa framework to estimate the gesture performed. Hov
tions (undulations in the temporal domain) that occur dur- ever, structured background noise can adversely affect do
ing gesticulation. Gesture recognition schemes can alsoInant motion extraction. Jerragt al. [2] use Neuro-fuzzy

be categorised on the basis of the parameters thafc are useg/stems for gesture recognition. The normalized lengt
to model the appearance of the hand e.g., hand_ sHhouet_tebf vectors, running from centroid of detected hand regic
based model, graph-based model, use of Fourier descripy, pang region border near the finger-tips are used as f

tors, b-sp!mes etc. . ) . tures. ‘Adaptive Neuro Fuzzy Inference Systems (ANFIS
Pavlovicet al. [10] give an extensive review of the ex-  gre ysed to process these features, and estimate the ge:

isting hand gesture recognition techniques. Netnal. [8] performed. This requirement of visibility of the fingertips
extract the parameters of the non-linear arm motion, a”dplaces restrictions on the gesture-set. Hoagal. [6] de-

unify them with shape attributes of the hand for recogni- g¢rine a four camera system to track and recognise ha
tion. A gesture is broken down into smallmcognition
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(b) Sample hand shapes detected by the tracker.
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shapes and human faces. The system uses depth estimates 76 82
to enhance the tracking of hands and face. Gestures are rep- GESTURE 3

resented using directional features in sub-sampled images.
A hierarchical linear discriminant analysis is carried out on
these feature images to recognise the gestures. However,
having multiple cameras is not always feasible. Ahmad O
et al. [1] present a Point Distribution Model (PDM)-based @)
scheme for hand tracking and gesture recognition. Triesh

et al. [12] present a system for automatic classification of

hand postures using elastic graph matching. Hand postures

are modeled by labeled graphs and an iterative algorithm

is used to match the image with different graphs for shape 38
estimation. However, this is a compute-intensive process.
Zhuet al.[14] use geometric moments of hand region pixels
to represent the shape of hand. Linear re-parameterization
'S u_sed to combgt V‘?”ab'“ty in speed of gegtlgula}tlon. Nor- conclude in the last section and identify areas for furthe
malised correlation is used as measure of similarity betweenWOrk

test gesture and template gestures. '

In this paper, we use a predictive EigenTracker to track
the gesticulating hand. EigenTracker [3] is an appearance-2. Eigenspace Modeling: Shape, Trajectory
based tracker that can track objects simultaneously under-
going image motion and changes in appearance. In our ear-
lier work [4], [5] we enhance the EigenTracker by augment-  In this approach, the gesture is modeled byka
ing it with a CONDENSATION-based predictive frame- dimensional vector. The components of this vector are tl
work. Of great use is the ability of a predictive Eigen- parameters that describe the different hand shapes and
Tracker to learn and track unknown views of the objgtt  portion of trajectory traced by that shape during gesticul:
the fly The output of the tracker is a set of object recon- tion. We use eigenspace approach for compact, appro
struction coefficients describing the view of the object and mate representation of different hand shapes. Such a ref
affine transformation coefficients that describe the object sentation is robust as it is based on the general appeara
motion. This information is used to represent the gesture of the hand, and is independent of existence of any speci
as vectors. The next section describes our gesture model ifieature. Such a representation is possible because of us
detail. Experimental results are presented in section 3. WeEigenTracker.

Figure 2. First three gestures in the vocabulary.
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Figure 3. Gestures 4, 5, and 6 in the vocabulary.

2.1. Modeling a Gesture
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Figure 4. Gestures 7 and 8 in the vocabulary.

After every epoch, the sequence of affine coefficien
output by the EigenTracker gives the trajectory traced
that hand shapes() in space. This trajectors; is modeled
by a curve (line, spline or other higher order model) that |
described by a set of parametefs \Vector representation
v; of the gesturg, (gesture vector;) is obtained by stack-
ing together these coefficient sets observed in the gestt
v; = [esi cti]T, Vi, wherei denotes the epoch number.

2.2. Choosing a Gesture Set

Gestures are classified according to the number of epc
changes required by the EigenTracker. Therefore, differe
classes of gestures differ in the size of the gesture vectt

An EigenTracker gives as output a set of eigenspace re-used to describe them. The gesture vocabulary is rep

construction coefficiente and affine transformation coef-

sented a§J, {k; }, wherek; is the set of gestures that require

ficientsa. Depending upon the subsequent reconstruction? €P0ch-changes during the tracking phase. To recognis
error, the EigenTracker updates the eigenspace. Drasti@Uery gesture;, the search is localised in that setwhich
change in the appearance of the gesticulating hand, causefias the same number of epoch-changes as in the query (
by the change in the hand shape, results in large reconstructUre-

tion error forcing an epoch change — constructing the ap-

Using the sample gestures available in the training s

pearance eigenspace afresh. An epoch change thus indtheé mean gesture vector (gesture templatend corre-
cates a new shape of the gesticulating hand. The view of theSPonding correlation matriX; is calculated for every ges-

hand ati*” epoch is stored as shapg An eigenspacey,
is then constructed from properly scaled shapehat are

ture j. To classify a query gesture represented by gestt
vectorv;, we calculate its Mahalanobis distanég from

collected from different training gestures. The coefficients €ach of the mean gestures given by,

cs;, result of projecting the shapeg on this eigenspacgs,
are used to represent the shapes in a unified manner.

=

dij = [(ve =7;)"S7 (0 = 75)] 7, V) @



The likelihoodp; of the given query gesture being classified shape. In parametric form, the lineis represented as

as gesturg is given by a + rx + rey = 0, where/ri2+m32 = 1. Thus,
o—ds ¢, = [ari )" is the set of parameters that completel
Pi= =g 2 describes the trajectory traced by the corresponding ha

e shape. We estimate the parameters,, r» using the to-

In this scheme, the gesture-space is partitioned into smalletal least squares minimization technique. Different har
subspaces, each corresponding to a partiaiémsof ges- shapes are represented using the set of parameters obta
tures. Each gesture is represented gionin the gesture- by projecting them onto the eigenspdgg (ref. sec. 2.1).
subspace of corresponding gesture class, characterised by

the mean gesture vector and the correlation matrix. In the3.3. Training

gesture vocabulary, the gestures belonging to the same class

should be chosen so that they occupy well separated regions 1o calculate the mean gesture vector and correspondi
in the corresponding gesture subspace. It is apparent thagorrelation matrix (for gesture recognition) eight test se
the minimum distance between two gestures belonging toquences were used for every gesture in the vocabulary.

the same class puts an upper bound on the accuracy of thgaining sequences were thus used in total. Since every g
recognition system. Higher the separation of the gestures inyre involves two hand shapes, a total of 128 hand sha
gesture-space, better is the performance of the recognitionmages were collected from the training data. Figure 1(l
system. The following section describes the experimentalshows some of the shape images collected from the t
results obtained using this scheme. data. (The black dots arise at points of faulty skin colot
3. A Representative Gesture Set: Experiments dgtection.) After using linear intgrpolation to normglise th

size of each of the hand shape image$® x 100, singu-
lar value decomposition (SVD) was calculated for the entil

In this section, we present the results of our experimen- £l bserved that five most sianificant eigenval
tation with a representative gesture set. Four different hang>S" 't Was observed that five most signiicant eigenvau
contributed more than 90% of the total energy, and contrib

shapes are used to construct the gesture vocabulary. Figf‘on of each of the rest was marainal. This can be exolain
ure 1(a) shows the four basic hand shapes - A, B, C, and- stwas ginat. 1his xplain

. C . Py the redundancy in the input hand shape images — fc
D. These shapes were chosen since they significantly differ .
from each other in appearance, thus minimizing the possi-dlfferent hand shapes and 128 sample images. We theref

bility of incorrect shape identification. The gesture vocabu- describe every hand shape by taking its projections on the

lary consists of eight gestures. These gestures can be usef&/ e basis elgenvgctors.
Each gesture is thus represented by a 16 element vec

to control application software such as Wina@ip p
[a11 Q12... A15 ﬂn ce ﬁ13 Q21 (22 ... (25 521 cee ﬂ23] y

3.1. Gesture Set Modeling whereay; and; are parameters describing the hand shaj
and trajectory corresponding the first epoch, angand

Each gesture consists of two different hand shapes, reJ2i describe the shape and trajectory of the hand in t

quiring two epoch changes in the tracking phase. Figure 25€¢ond epoch, respectively.

shows the first three gestures in the vocabulary. For every o

gesture, the upper row depicts the schematic, and the sec3-4. Gesture Recognition

ond row shows frames extracted from the actual video. Fig-

ures 3, 4 show gestures four to eight of the vocabulary, and Figures 5 and 6 show the intermediate steps in proce:

follow the same convention as in Figure 2. Note that gestureing of gesture four from set seven using our scheme. Fi

pairs two-six, three-four, and seven-eight, involve identical ure 5 shows a few frames of the tracker’s output. The hat

hand shapes (in order) and differ only in the hand trajecto- is marked with a tightly fitting bounding box. The tracke!

ries. Conversely, in gesture pairs one-five, two-three, andfollows the hand with initial bounding box parameters an

four-six, the hand traces identical trajectory but assumeseigenspace till frame 85. At the end of processing frame 8

different shapes. In spite of this apparent resemblance, thea large object reconstruction error forces an epoch chan

gestures in the vocabulary are well separatedi@sture- A new bounding box is calculated in frame 86 ([4], [5]).

space Table 1 shows the distances between the gestureThe tracking commences with this new hand shape detec;

templates;, j = {1, ---,8} of our gesture vocabulary. in frame 86. In Figure 6(a), on left, we show the shape ¢
the hand - properly scaled — detected by the tracker in frar
3.2. Modeling a Gesture 42. Shown on the right, in Figure 6(a), is the linear appro»

imation to the trajectory traced by this shape of the han
For the gestures of our vocabulary, we use straight line On similar lines, Figure 6(b) shows the detected hand sha
approximation to the trajectory traced by a particular hand (after normalising the image size) and the linear approx



| [ GES.1 | GES.2 | GES.3 | GES.4 | GES.5 | GES.6 | GES.7 | GES.8 |

GES. 1 0 1.5x108 [ 5.8 %107 [ 6.7x 107 [ 85x 107 | 1.1 x 108 [ 7.8 x 10”7 [ 1.7 x 10%
GES. 2] 3.3 x 10° 0 1.3%x107 [ 5.4x107 [ 1.9x10° | 2.3x 107 | 1.6 x 10% | 3.8 x 10°®
GES. 3] 3.0x 10% | 2.0 x 107 0 6.7x 107 [ 1.9x10° | 3.5 x 107 | 3.2x 107 | 6.3 x 10°®
GES. 4] 3.8x10% | 4.8 x 107 | 6.1 x 107 0 2.0x 10 | 8.0 x 10° | 7.6 x 107 | 5.7 x 10®
GES.5[ 4.1 x107 | 1.8 x10% | 7.5 x 107 | 7.2 x 107 0 1.2x10% [ 8.6 x 107 | 5.8 x 103
GES.6| 4.0x10% | 3.9x 10" | 6.1 x 107 | 8.6 x 10° | 2.0 x 10° 0 8.7 x 107 | 3.4 x 108
GES. 7] 73x107 [ 81x107 [ 22x 107 [ 1.2x 10% | 7.6 x 10° | 1.5 x 10® 0 1.1 x 103
GES.8]51x107 [ 1.1x10% | 1.1 x10%° | 4.2x 107 | 5.6 x 108 | 6.8 x 10" | 1.5 x 10% 0

Table 1. Mahalanobis distance between the template gestures
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(a) Initial hand shape and trajectory
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Figure 5. Output of predictive EigenTracker (gesture four,
from set seven).
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150

mation to the trajectory in the second half of the gesture.

100 200 300
The performance of this framework for gesture recogni- (b) Second hand shape and trajectory

tion was tested using 64 gestures present in the training set,
and 16 additional gestures which were not used during the
training phase. Table 2 lists the Mahalanobis distances of
gestures of set seven from template gestures. These ges-
tures were used, among others, during the training phase to
calculate the gesture templates. All these gestures are corgesture distance for gesture recognition. Further exte
rectly recognised. Similar results were also observed for sions of this work include applying this framework for two
other gestures that were used during training. The Maha-handed gesture recognition. Another interesting extensi
lanobis distances of gestures of set nine (which were notwould be to best adapt the framework to an existing set
included in the training process) from the template gesturesgestures.
are listed in Table 3. As evident is this table, the system cor-
rectly recognises all these gestures. To conclude, the systerReferences
recognised all the 80 gestures with 100% accuracy.

Figure 6. Hand shapes and Linear approximation of tra-
jectories (gesture four, from set seven).
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[ ] GES.1 | GES.2 | GES.3 | GES.4 | GES.5 | GES.6 | GES.7 | GES.8 |

1 0.79 15x1085 11.2x108 [ 79%x107 [ 38x 107 | 1.2x 108 [ 8.6 x 107 | 1.5 x 10%
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Table 2. Mahalanobis distance of gestures of set seven from template gestures

[ ] GES.1 [ GES.2 | GES.3 [ GES.4 | GES.5 [ GES.6 | GES.7 [ GES.8
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Table 3. Mahalanobis distance of gestures of set nine (not used for training) from template gestures
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