
Encoding Quadrilateral Meshes in 2.40 bits per Vertex

Pawel Kosicki
University of Toronto

pav.kosicki@utoronto.ca

Asish Mukhopadhyay
University of Windsor

asishm@uwindsor.ca

Abstract

In this note, we show that the encoding scheme discussed
in [1] for quadrilateral meshes can be improved to 2.40 bits
per vertex, using arithmetic coding. This is a considerable
improvement over the current bound of 2.67 bits per vertex.

1. Introduction

Following the publication of Deering’s paper [3], geo-
metric compression has become a very active field of re-
search [2], [1]. The emphasis of the research has primarily
been on finding efficient schemes for encoding the geometry
of meshes that are made up entirely of triangles, or entirely
of quadrilaterals (quad, for short), or a mixture of both. The
practical significance of this is that it enables one to store
and transmit such meshes (over the Internet) efficiently.

In an earlier paper [5], we showed that the encod-
ing scheme discussed in [1] for quadrilateral meshes
(quadmesh, for short) can be improved to less than 3 bits
per vertex. We also pointed out that an equivalence between
the labelling schemes of King et al [2] and of Kronrod &
Gotsman [1], improves this further to 2.67 bits per vertex.
The same upper bound has also been reported in [2], mak-
ing an involved use of the CLRES scheme. We left open the
question whether this bound can be improved. The main
contribution of this paper is to propose a scheme based on
arithmetic coding that improves this bound to 2.4006 bits
per vertex. This approach was used by Gumhold [6] to im-
prove the CLERS encoding scheme for triangle meshes [7]
from 3.67 bits per vertex to 3.552 bits per vertex.

2. Kronrod-Gotsman scheme

The Kronrod-Gotsman scheme [1] generalizes the
CLERS labelling scheme of [2] to non-triangular meshes.
Their main observation is that as we traverse a mesh (with
or without boundary) in depth-first order, the interaction of
each polygon with the rest of the mesh can be enumerated

in a finite number of ways. For example, for a quadmesh,
each quad interacts with the rest of the mesh in one of 13
ways (Fig.1, arrows indicate the current gate) and hence this
interaction can be coded in a unique manner. It is easy to
enumerate all these cases if we note that each of the re-
maining three edges of the current quad either belongs to
the mesh boundary or doesn’t, and so also for the remaining
two vertices.

The compression process traverses the mesh in depth-
first order, starting with a quad, at least one of whose edges
is part of the mesh boundary. For a closed mesh, we can
create a boundary by removing one of the polygons or by
introducing opposite orientations on one edge. In the fol-
lowing discussion, the term gate will mean an edge of a
quad that we are currently visiting, and one that it shares
with the current mesh boundary.

For example, if we traverse the quadmesh of Fig.2, start-
ing with the thickly-marked edge on the mesh boundary as
the initial gate, and always choose the next gate to be the
edge of the current quad that is counterclockwise with re-
spect to the current gate then we get the following output
string: Q13Q6Q6Q5Q12Q12Q6Q6Q12Q12Q9Q1Q6Q1.

3. Encoding scheme with less than 3.0 bpv

Kronrod & Gotsman [1] proposed a prefix-free variable
length encoding scheme for such a string that needs at most
3.5 bits per quad. We show that this can be improved to less
than 3 bits per vertex.

As we process a quad, we introduce new edges and ver-
tices. These new edges and new vertices are free edges and
vertices that become part of the mesh boundary when we
process and remove the current quad. An edge or vertex of
a quad is free if it doesn’t belong to the mesh boundary. Ta-
ble 1 summarizes this information for each of the thirteen
types of quad that is encountered during mesh traversal.

The following observation about the compression pro-
cess is significant and, along with equations (2-4), underlies
the coding scheme of Table 2.

Observation 1 In a manifold mesh, a quad of type
Q5, Q10, Q12,or Q13 is never followed by a quad of type

Q13Q12Q11

Q10Q9Q8

Q7Q6Q5

Q4Q3
Q1 Q2

Figure 1. Interaction of a quad with the mesh

Q1, Q2, Q3, Q4, Q5, if while traversing the mesh we choose
the next gate to be situated counterclockwise with respect to
the present one.

We claim that the coding scheme of Table 2 has an up-
per bound of 3.0 bits per vertex. For a proof assume that
we have a quadmesh homeomorphic to a sphere. Let |E|,
|V | and |Q| be the count of its edges, vertices and quads re-
spectively. Since each edge is shared by exactly two quads,
|E| = 2|Q|. Combining this with Euler’s formula, we get

|V | = |Q| + 2 (1)

For a very large mesh, |Q| >> 2; therefore, |V | = |Q|
approximately. Let |Qi| denote the number of quads of type
Qi and |Qi−j | = |Qi| + . . . + |Qj |, j > i. From |V | = |Q|
above and Table 2, it follows that

2|Q13| + |Q5| + |Q10−12| = |Q| (2)

as the left-hand side counts the number of vertices in the
quadmesh.

Figure 2. Traversing a quadmesh

Quad new new
type edges vertices
Q1 0 0
Q2 1 0
Q3 2 0
Q4 1 0
Q5 2 1
Q6 1 0
Q7 2 0
Q8 3 0
Q9 2 0
Q10 3 1
Q11 3 1
Q12 2 1
Q13 3 2

Table 1. Mesh-Quad Interactions

Again, as |V | = |Q| (approximately), the number of
quads which have two free vertices must be equal to the
number of quads which have no free vertices. Thus from
Table 1, it follows that,

|Q13| = |Q1−4| + |Q6−9| (3)

Each path from the root in a quad spanning tree ends in
a quad of type Q1 (a leaf node), and each branch begins
either at the root gate or at a quad of type Q3 or of type
Q7−11. With each quad of type Q3, Q7, Q9, Q10, and Q11,
one additional quad of type Q1 is associated. With each
quad of type Q8, two additional quads of type Q1 are asso-
ciated. Therefore, we have the following constraint, based
on a generalization of the formula that in a binary tree, the
number of leaf nodes is one more than the nodes of degree
2.

|Q3| + |Q7−11| + |Q8| = |Q1| − 1 (4)

Using the constraint of equation (3), we can group each
of quad of types Q1−4 and Q6−9 with a quad of type Q13

as shown in Table 3.
Thus the grouping of a quad of each of the types Q1−9

with a quad of type Q13 yield an average bit count of at most
3. We next use the constraint of equation (4) to refine this
analysis even further. This constraint implies that |Q7−11|+
|Q8| < |Q1| − 1. Therefore, each of the quad-types from
Q7−11 and Q8 can be associated with at most one quad of
type Q1.

Since quads of type Q3 have been taken care of, we
don’t have to find groups for these. Since each quad of
type Q1 has been grouped with a quad of type Q13 already
and one quad of type Q1 is associated with each one of
the quad types Q7, Q9, Q10, Q11, while two quads of type

Encoding Current Quad Next Quad Code Num. of bits
Quad started with
Q6−13

Q6 Q1−5 11111 5

Q6−13 11110 5
Q7 Q1−5 11101 5

Q6−13 11100 5
Q8 Q1−5 11011 5

Q6−13 11010 5
Q9 Q1−5 11001 5

Q6−13 11000 5
Q10 Q6−13 10111 5
Q11 Q1−5 10110 5

Q6−13 10101 5
Q12 Q6−13 100 3
Q13 Q6−13 0 1

Quad started with
Q1−5

Q1 Q1−5 00 2

Q6−13 01 2
Q2 Q1−5 1100 4

Q6−13 1101 4
Q3 Q1−5 1010 4

Q6−13 1011 4
Q4 Q1−5 1000 4

Q6−13 1001 4
Q5 Q6−13 111 3

Table 2. Coding Scheme

Q1’s are associated with a quad of type Q8, we need to as-
sociate a single quad-type group (Q1, Q13) with each one
of (Q7, Q13), (Q9, Q13), Q10, and Q11. Futher, we need
to associate two groups of (Q1, Q13) with one group of
(Q8, Q13). The grouping details are shown in Table 4.

The above grouping ensures that Q7, Q8, Q9, Q10, Q11

can be grouped to achieve an upper bound of at most 3
bits per vertex. Quad-types Q5 and Q12 do not need to be
grouped, since these are already assigned 3 bits each. We
conclude that quadmesh connectivity can be encoded in less
than 3 bits per vertex. Table 5 summarizes the final group-
ings.

From Table 3, the total cost of the encoding is

3|Q| − (Q2| + |Q3| + |Q4|) − 3(|Q7| + |Q9|) − 6|Q8| −
|Q10| − |Q11| − 3|Q3| − 3.

Since |V | = |Q| + 2 (exactly) for a quadmesh, the total
cost is therefore guaranteed to be less than 3 bits per vertex.

4. Improving the upper bound to 2.67 bpv

Table 6 shows the connection between the labelling
schemes of Kronrod-Gotsman[KG] and King et al[KRS]
This correspondence is obtained by noticing that in the

scheme of King et al [2] a quad is implicitly split by a di-
agonal into two triangles so that the next gate is situated
counterclockwise with respect to the current one.

KG KRS KG KRS
Q1 LE Q8 SS

Q2 LL Q9 SR

Q3 LS Q10 SC

Q4 LR Q11 CS

Q5 LC Q12 CR

Q6 LE Q13 CC

Q7 SL

Table 6. Labelling scheme correspondence

From the above table of equivalence of labels, we can
obtain an encoding scheme that uses less than 2.67 bits per
vertex, using the encoding scheme in [2].

5. New encoding scheme

The new encoding scheme, based on arithmetic encod-
ing, is inspired by the work of [6]. Given the probablity dis-
tribution of a message source, in arithmetic coding a source

Quad bits in Quad Quad bits in Quad Average bits ≤ 3??
Q1 2 Q13 1 1.5 Yes
Q2 4 Q13 1 2.5 Yes
Q3 4 Q13 1 2.5 Yes
Q4 4 Q13 1 2.5 Yes
Q6 5 Q13 1 3.0 Yes
Q7 5 Q13 1 3.0 Yes
Q8 5 Q13 1 3.0 Yes
Q9 5 Q13 1 3.0 Yes

Table 3. Code bits analysis for Q1 to Q9

Group Total bits Group Total bits Average bits ≤ 3??
(Q7, Q13) 6 (Q1, Q13) 3 2.25 Yes
(Q8, Q13) 6 (Q1, Q13, Q1, Q13) 6 2.0 Yes
(Q9, Q13) 6 (Q1, Q13) 3 2.25 Yes

Q10 5 (Q1, Q13) 3 2.67 Yes
Q11 5 (Q1, Q13) 3 2.67 Yes

Table 4. Code bits analysis for Q7 to Q11

ensemble is represented by a subinterval of the unit inter-
val [0,1). If s is the size of this subinterval, the number of
bits required to encode the source ensemble of n messages
is −logs = Σn

ι=1 − log2(vι) where vι is the probability
of occurrence of the ιth message. This is exactly the en-
tropy of the source. For example, if the source ensemble
{a, b, c, d, #} has the probabilities {0.2, 0.4, 0.1, 0.2, 0.1}
then the message ensemble aadb# is represented by the in-
terval [0.03248, 0.0328), when messages a, b, c, d, # rep-
resent the intervals [0,0.2), [0.2,0.6), [0.6,0.7), [0.7,0.9),
[0.9,1) respectively. For more details see [8]. .

6. More constraints on the quad string

First of all, we assume that all the Q-symbols occur with
probability vτ , barring Q1 and Q13, which occur with prob-
abilities 7vτ and 14vτ , respectively, as can be seen from
equations (3) and (4). Next, we note that each of the 13
Q-symbols modifies the length of the mesh border in one
of these ways: increase it by 2, keep it the same, decrease
it by 2 or by 4, or split it into two submeshes with borders
of unknown length. The effects on the length of the mesh
boundary of the individual Q-symbols are shown in Table 7
below.

While the constraint of Observation 1 was the corner-
stone of the 3.0 bits per vertex upper bound, to improve
this bound we have to think of additional constraints. This
comes in the form of the minimum currently-allowable
mesh-border length. For example, we can’t have a quad
of type Q1 if the current mesh-border is longer than 4. At
the start, this is always 4 since every non-degenerate mesh

Symbol Effect Symbol Effect
Q1 -4 Q8 ?
Q2 -2 Q9 ?
Q3 ? Q10 ?
Q4 -2 Q11 ?
Q5 0 Q12 0
Q6 -2 Q13 +2
Q7 ?

Table 7. Effect of Q-symbols on border length

is made up of at least one quad; the probability of this hap-
pening is 1. From this step on, the minimum mesh-border
length can either increase to 6 (if the next Q-symbol is a
Q13) or remain at a minimum of 4 (because it could either
be ’reduced’ by Q2,4,6, but the minimum length would re-
main as 4; it could be split by Q3,7−11 or terminated by Q1,
in which case the new mesh would also have a border length
of at least 4, and finally Q5,12 would cause the border to re-
main the same). Let C stand for one of the quad types: Q5,
Q10, Q12, Q13. We therefore have the equation

1 = 18vτ + 14 ∗ 16,Cvτ , (5)

where the conditional unity 1i,C indicates that the preced-
ing quad is of type C, while the conditional unity 1C indi-
cates the preceding quad is not of type C. Continuing this
argument we obtain the equations of Table 8.

Let us clarify a couple of cases: 110,C and 1N. 110,C

can turn into 18 (if a Q6 occurs, which has a probability of
vτ), into 110,C (if we have a Q12, which also has a proba-
bility of vτ), into 112,C (if a Q13 occurs, which has a prob-

Grouping Total Cost quads in Amortized bits saved occurrences
group Cost of this group

(Q2, Q13) or (Q3, Q13) 5 2 2.5 1 |Q2| + |Q3| + |Q4|
or (Q4, Q13)

(Q7, Q13, Q1, Q13) 9 4 2.25 3 |Q7| + |Q9|
or (Q9, Q13, Q1, Q13)

(Q8, Q13, Q1, Q13, Q1, Q13) 12 6 2.0 6 |Q8|
(Q10, Q1, Q13) 8 3 2.67 1 |Q10|
(Q11, Q1, Q13) 8 3 2.67 1 |Q11|

remaining(Q1, Q13) 3 2 1.5 3 |Q3|+1
Q5 3 1 3 0 |Q5|

(Q6, Q13) 6 2 3 0 |Q6|
Q12 3 1 3 0 |Q12|

Table 5. Amortization Analysis

cond follow equation
4 Q1−13 1 = (18 + 14 ∗ 16,C)vτ

6,C Q6−13 16,C = (1 + 16,C + 14 ∗ 18,C + 5)vτ

8,C Q6−13 18,C = (16 + 18,C + 14 ∗ 110,C + 5)vτ

10,C Q6−13 110,C = (18 + 110,C + 14 ∗ 112,C + 5)vτ

. . .

. . .

. . .
i, C Q6−13 1i,C = (1i−2 + 1i,C + 14 ∗ 1i+2,C + 5)vτ

. . .

. . .

. . .
N, C Q6−13 1N,C = (1N−2 + 1N,C + 5)vτ

6 Q2−13 16 = (3 + 2 ∗ 16,C + 14 ∗ 18,C + 6)vτ

8 Q2−13 18 = (3 ∗ 16 + 2 ∗ 18,C + 14 ∗ 110,C + 6)vτ

10 Q2−13 110 = (3 ∗ 18 + 2 ∗ 110,C + 14 ∗ 112,C + 6)vτ

. . .

. . .

. . .
i Q2−13 1i = (3 ∗ 1i−2 + 2 ∗ 1i,C + 14 ∗ 1i+2,C + 6)vτ

. . .

. . .

. . .
N Q2−13 1N = (3 ∗ 1N−2 + 2 ∗ 1N,C + 6)vτ

Table 8. Conditional unity table

ability of 14vτ) and finally into a mesh of unknown length
if we have a Q7−11 which have a combined probability of
5vτ . If we did not define N to be the maximum allowable
border length, we would have an unsolvable infinite set of
equations. We therefore say that the border length cannot
exceed N . The case of 1N therefore can change into 1N−2

(if Q2,4,6 occur) with a probability of 3vτ , into 1N,C (in the
case of Q5,12), into 1N+2,C with a probability of 0 (since
N is the maximum border length) or into submeshes of un-
known lengths if we encounter the Q-symbols Q3,7−11.

We proceded to solve these equations for various values
of N using Computer Algebra packages Maple and Matlab.
The results are shown in Table 9 below, from which it is
evident that vτ converges to a value less than 0.039.

N vτ bits required
12 0.03984 2.3698
16 0.03926 2.3910
20 0.03909 2.3972
24 0.03903 2.3995
30 0.03901 2.4002
54 0.03900093
100 0.03900092

0.03900 2.4006

Table 9. Bits for different N

We summarize the dicussion above in the following
theorem.

Theorem: A quadmesh can be encoded in no more than
2.4006 bits per vertex.

7. Conclusions

In this note, we have shown that a scheme proposed by
Kronrod & Gotsman [1] for quadmesh encoding can be im-
proved to have an upper bound of less than 2.4006 bits per
vertex. We supsect that this bound can be lowered still fur-
ther.

References

[1] Boris Kronrod and Craig Gotsman. Efficient coding of
non-triangular mesh connectivity. In Proc. 16th Euro-
pean Workshop on Computational Geometry, pp. 24-
26, 2000.

[2] Davis King, Jarek Rossignac and Andrzej Szymczak.
Connectivity compression for irregular quadrilateral
meshes. GVU Tech Report GVU-GIT-99-36.

[3] M. Deering. Geometry Compression. In Proc. ACM
SIGGRAPH’95, pp. 13-20, August 1995.

[4] T. H. Cormen, C. E. Leiserson and R. L. Rivest. Intro-
duction to Algorithms, Prentice-Hall, 1998.

[5] Asish Mukhopadhyay and Quanbin Jing. Encoding
Quadrilateral Meshes. In Proc. 15th CCCG, Dal-
housie University, Halifax, pp. 60-63, 2003.

[6] Stefan Gumhold. New bounds on the encoding of
planar triangulations, WSI-2000-1, ISSN 0946-3852,
March 9, 2000.

[7] Davis King and Jarek Rossignac. Guaranteed 3.67V
bit encoding of planar triangle meshes. In Proc. of the
11th CCCG, pp. 146-149,1999.

[8] Debra A. Lelewer and Daniel S. Hirchberg. Data
Compression. ACM Computing Surveys, Vol. 19, No.
3, pp. 261-296, 1987.

