
Depth+Texture Representation for Image Based Rendering

P. J. Narayanan, Sashi Kumar P and Sireesh Reddy K
Centre for Visual Information Technology

International Institute of Information Technology
Hyderabad 500019

Abstract

Image Based Rendering holds a lot of promise for navigat-
ing through a real world scene without modeling it manu-
ally. Different representations have been proposed for IBR
in the literature. In this paper, we argue that a representa-
tion using depth maps and texture images from a number
of viewpoints is a rich and viable representation for IBR.
We discuss different aspects of this representation includ-
ing capture, representation, compression and rendering. We
show several results to show how the representation can be
used to model and render complex scenes.

1. Introduction

Image Based Modeling and Rendering (IBMR) has at-
tracted much attention in the past decade. The potential to
produce new views of a real scene with the realism impos-
sible to achieve by other means makes it very appealing.
IBMR aims to capture an environment using a number of
(carefully placed) cameras. Any view of the environment
can be generated from these views subsequently. Different
internal representations are used by different IBR methods.
These can be divided into two broad categories: representa-
tions without any geometric model and representations with
geometric model of some kind.

Early IBR efforts produced new views of scenes given
two or more images of it [4, 18]. They used point-to-point
correspondence, which contained all the structural informa-
tion about the scene. Many later techniques followed this
philosophy of generating new views purely from images.
These include methods that represent the scene as a collec-
tion of rays, which in the most general case produced the
plenoptic function [1]. A new view is generated by pick-
ing an appropriate subset of such rays [13, 10, 7, 19]. They
require a large number of input views – often running into
thousands – for modeling a scene satisfactorily. This makes
them practically unusable other than for static scenes. The
representation was also bulky and needs sophisticated com-
pression schemes.

The use of approximate geometry for view genera-
tion was a significant contribution of Lumigraph rendering
[7]. The availability of even approximate geometry can

reduce the requirements on number of views drastically.
View-dependent texture mapping [6] used known geome-
try and selects textures relevant to the view being gener-
ated to model architectural monuments. Unstructured Lu-
migraph [3] extend this idea to rendering using an unstruc-
tured collection of views and approximate models. The Vir-
tualized Reality system captured dynamic scenes and mod-
eled them for subsequent rendering using a studio with a
few dozens of cameras [15]. Many similar systems have
been built in recent years for modeling, immersion, video-
conferencing, etc. [20, 2]. Recently, a layered representa-
tion with full geometry recovery for modeling and render-
ing dynamic scenes has been reported by Zitnick et al. [22].

In this paper, we discuss a representation consisting of
depth and texture from different locations for image based
modeling and rendering. We call this the Depth+Texture
Representation (D+TR). Similar representations have been
used in the past [12, 14]. McMillan called it depth im-
age and discussed how they could be warped to new views.
Mark generated depth images of complex models on the fly
using graphics and used a post-rendering warping scheme
for faster rendering of the models [11]. A systematic study
of such a representation from the point of view of represen-
tation and hole-free rendering is the focus of this paper.

The D+TR is useful for many reasons. One, the state-of-
the-art in 3D structure recovery using multicamera stereo
has made it possible to capture aligned depth and texture
of dynamic events from many vantage points satisfactorily.
The number of cameras required is reasonable and they can
be calibrated effectively. Two, the models generated from
D+TR are compatible with standard graphics tools; hence
rendering can be done effectively using standard graphics
hardware. Third, the visibility-limited aspect of the repre-
sentation provides several locality properties. A new view
will be affected only by depths and textures in its vicinity.
This increases the fidelity of the generated views even when
the geometric model recovered is inexact.

We describe the depth+texture representation, algo-
rithms to render using it, and the important aspects of this
representation in this paper. We also show results of apply-
ing it on synthetic scenes and real scenes involving complex
viewpoints.

Figure 1: Texture and depth map from four viewpoints of a
synthetic scene and two views of a real scene. Depth map
is shown immediately below the corresponding image.

2. Depth+Texture Representation

The basic representation consists of an image and a depth
map aligned with it, along with the camera calibration pa-
rameters. The depth is a two-dimensional array of real val-
ues, with location

���������
storing the depth or normal dis-

tance to the point that projects to pixel
�	���
���

in the image.
Computer vision provides several methods to compute such
structure of visible points, called the 2- �
 D structure, using
different clues from images. Motion, shading, focus, inter-
reflections, etc., have been used to this end, but stereo has
been most popular. Traditional stereo tries to locate points
in multiple views that are projections of the same world
point. Triangulation gives the 3D structure of the point after
identifying it in more than one view. Volumetric methods
turn this approach round and map each world volume cell
or voxel to the views in which it is visible [9]. Visual consis-
tency across these cameras establishes the voxel as part of a
visible, opaque surface. Recovering such geometric struc-
ture of the scene from multiple cameras can be done reliably
today using stereo [17]. Range scanners using lasers, struc-
tured lighting, etc., can also been used to detect structure.
Figure 1 gives images and depth maps for synthetic and real
scenes from different viewpoints. Closer points are shown
brighter.

The depth map gives the Z-coordinates for a regularly
sampled X-Y grid coinciding with pixel grid of the camera.
Combined with camera calibration parameters, this repre-
sents the 3D structure of all points visible from a 3D loca-
tion as a point-cloud. Grouping of points into higher level

structures such as polygons and objects is not available and
will have to be inferred. The D+TR from one viewpoint rep-
resents local, partial structure of the scene, i.e., parts visible
from a point in space with a limited view volume. The entire
scene can be represented using multiple, distributed D+TRs
which together capture all of the scene space. It is possible
to merge these partial models into a single global structure
using mesh stitching [21], volumetric merging [5], etc.

We now discuss some of the issues relating to the
depth+texture representation.
Construction: The D+TR can be created using a suitable
3D structure recovery method, including stereo, range sen-
sors, shape-from-shading, etc. Multicamera stereo remains
the most viable option as cameras are inexpensive and non-
intrusive. Depth and texture needs to be captured only from
a few points of view since geometry can be interpolated. A
calibrated, instrumented setup consisting of a dozen or so
cameras can capture static or dynamic events as they hap-
pen. Depth map can be computed for each camera using
other cameras in its neighbourhood and a suitable stereo
program. The camera image and calibration matrix com-
plete one D+TR. This is repeated for all cameras resulting
in the D+TR representation of the scene.
Representation: Depth and texture can be stored essen-
tially as images in memory and disks. The depth map con-
tains real numbers whose range depends on the resolution
of the structure recovery algorithm. Images with 16 bits
per pixel can represent depths upto 65 meters using integer
millimeter values. The depth images need to be handled dif-
ferently as they do not carry photometric information. Each
D+TR needs 12 numbers to represent the ����� calibration
matrix.
Compression: The image representation of the depth map
may not lend themselves nicely to standard image compres-
sion techniques, which are psychovisually motivated. The
scene representation using multiple D+TRs contains redun-
dant descriptions of common parts and can be compressed
together. Multiview compression of texture images can be
performed by exploiting the constraints between views such
as disparity, epipolar constraint, multilinear tensors, etc.
Multiview compression of the depth maps is an area that
merits serious attention.
Rendering: The depth map gives a visibility-limited model
of the scene and can be rendered easily using graphics tech-
niques. Texture mapping ensures that photorealism can be
brought into it. Rendering the scene using multiple depth
maps, however, require new algorithms. We discuss this is-
sue in detail in the next section.

3. D+TR Rendering

We first describe ways in which a single D+TR can be ren-
dered, followed by a discussion on how the scene can be
rendered seamlessly using multiple D+TRs.

Figure 2: Rendered views of the synthetic scene (top) and
real scene (bottom) from the same viewpoint. Left column
uses splatting for rendering, middle column uses implicit
triangulation. Last column subsamples the D+TR by a fac-
tor of 2 and uses triangulation for rendering.

3.1 Rendering one D+TR

A depth map represents a cloud of 3D points and can be
rendered using one of two ways using a standard graphics
system. In each case, the underlying model is visibility lim-
ited since the cloud of points is.
Splatting: The point cloud can be splatted or rendered as
point-features. Splatting techniques broaden the individual
3D points to fill the space between points. The colour of
the splatted point is obtained from the corresponding im-
age pixel. Splatting has been used as the method for fast
rendering, as point features are quick to render [16]. The
disadvantage of splatting is that holes can show up where
data is missing if we zoom in much. The left column of
Figure 2 shows the results of rendering the D+TR from a
viewpoint using single pixel splatting. The holes due to the
lack of information can be seen as “shadows”, for example
of the vertical bar on the table top.
Implied Triangulation: The pixel grid of D+TR provides
a regular, dense, left-to-right and top-to-bottom ordering in
X and Y directions of the point cloud. These points are
sufficiently close to each other in 3D except where depth
discontinuities are involved. A simple triangulation can be
imposed on the point cloud as follows: Convert every � ���
section of the depth map into 2 triangles by drawing one
of the diagonals. The depth discontinuities are handled by
breaking all edges with large difference in the � -coordinate
between its end points and removing the corresponding tri-
angles from the model. Triangulation results in the inter-
polation of the interior points of the triangles, filling holes
created due to the lack of resolution. The interpolation can
produce low quality images if there is considerable gap in
the resolutions of the captured and rendered views, such as
when zooming in. This is a fundamental problem in image
based rendering. Images of the middle column of Figure 2

have been rendered using this approach. Holes due to shift
in viewpoint can be seen on the computer screen and on the
people at the back.

3.2 Subsampling the D+TR

The regular grid of the D+TR makes it easy to reduce the
model complexity. Subsampling the grid will reduce the
number of primitives to be drawn. The reduction in detail is
blind and not geometry driven. A hierarchy of representa-
tions is possible with the maps subsampled by different fac-
tors. Subsampling can have a serious impact when splatting
as no interpolation is performed. Splatting involves less ren-
dering resources and the need for subsampling may be felt
less. The right column of Figure 2 shows the same view-
points rendered after subsampling the D+TR by a factor of
2 respectively in the X and Y directions. The overall quality
is passable, but small features like the chair back has been
affected badly.

3.3 Rendering Multiple D+TRs

������
��

�	
�
���
���
�
��

������ ����

����
������

novel view

view 2

view 1

point A

view 3

view 4

point B

������

��

Figure 3: Different cases for view generation. See text for
details.

Each D+TR can be mapped to a new view using splat-
ting or implied triangulation. The generated view will have
holes or gaps corresponding to the part of the occluded
scene being exposed in the new view position. These holes
can be filled using another D+TR that sees those regions.
Parts of the scene could be visible to multiple cameras. The
views generated by multiple D+TRs have to be blended in
such cases. The general situation is shown in Figure 3. Both
hole filling and blending can be considered together as the
merging of multiple views. We discuss merging next.

3.4 Merging Multiple D+TRs

The colour and the depth values of each pixel of the new
view are available from each D+TR. The first task is to fill
the holes in one view using the others. Each pixel of the
new view could contain colour and � values from multi-
ple D+TRs. For example, point A and point B of Figure 3

Figure 4: Hole-free, merged versions of views shown in
Figure 2

map to the same pixel. The closest point is the correct point
and should be chosen to provide colour. In general, when� D+TRs map to a pixel, they should be merged based on
the closest � value in the new view. The conventional z-
buffering algorithm can be used for this and can take ad-
vantage of hardware acceleration. When a portion of the
scene is part of multiple D+TRs, the � -buffer values will
be close, as for point B using views 1 and 2. The colour
value from any view can be given to the pixel. Blending the
colour values will provide better results as the viewpoint
shifts. Buehler et al. present a detailed discussion on blend-
ing different colour estimates at each pixel due to different
views in their paper on Unstructured Lumigraph Render-
ing [3]. The weights assigned to each view should reflect
its proximity with the view being generated. We present a
discussion on blending next. Figure 4 shows the blended
versions of new views given in Fig. 2.

Pixel Blending: Consider each input D+TR that contributes
a colour to a pixel of the novel view. Its contribution should
be weighted using a proximity measure of the imaging ray
of that D+TR to the imaging ray in the new view. Several
proximity measures could be used for this. We use one de-
rived from angular distance between the two imaging rays
as shown in Figure 5. The blend function is applied in-
dependently on each pixel. The blend function should re-
sult in smooth changes in the generated view as the view-
point changes. Thus, the views that are close to the new
view should get emphasized and views that are away from
it should be deemphasized.

Blend Function: As shown in Figure 5,
�
� and

�
 are the
angular distances at a pixel for D+TRs from C1 and C2.
Several proximity measures can be defined using these an-
gles. Exponential blending computes weights as �������
	���
��
where

�
is the view index,

� � is the angular distance of view�
, and ��� is the weight for the view at that pixel. The con-

stant � controls the fall off as the angular distance increases.
Input views for which

� ������� � are eliminated as they

t2t1

��

���

���

��

��

 � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �

!�!�!�!!�!�!�!!�!�!�!!�!�!�!!�!�!�!!�!�!�!!�!�!�!!�!�!�!!�!�!�!!�!�!�!!�!�!�!!�!�!�!!�!�!�!!�!�!�!!�!�!�!

C1 D C2
Figure 5: Blending is based on angular distances

view the scene from the other side. In practice, �"�$# or
�%� � have been found to work well. Cosine weighting uses
������&('
)+* � � for a suitable ,.- � .

The � � values are sorted and the top / values are cho-
sen for blending as long as the weight is above a threshold.
These / weights are normalized at each pixel by dividing
by their sum to yield �10� values. The colour assigned to a
pixel is 2 � �10� �3� where �(� is the colour at the pixel due to
the view

�
and �10� is the normalized weight for it. We found

that /4� � or /5� � work quite well.
The complete rendering algorithm is given below.

for each D+TR 6 that is on the same side do
1. Generate the new view using 6 ’s depth and texture.
2. Read back image and � buffers.

End for
for each pixel 7 in the new view do

3. Compare the � values for it across all views.
4. Keep all views with the nearest � value within a thresh-

old.
5. Estimate the angles for each D+TR to 3D point x8
6. Compute the weights of each D+TR model.
7. Assign the weighted colour to pixel 7 .

End for

Figure 6 shows the relative contributions of different
D+TRs for 4 points marked on the new view. The D+TRs
that are close to the new viewpoint are emphasized in gen-
eral, but the effect of occlusions can be perceived in the
selection of the cameras.

4. Results

We demonstrate the representation and rendering algorithm
for D+TR models of synthetic and real scenes in this sec-
tion. The synthetic scene contains a table, chair, a flat-panel
and a few objects on the table, etc. Twenty D+TRs were
used for it in two rows and separated by 36 degrees. An-
other version enclosed this model in a room with distinct
textures for each wall. Images were saved as PPM files and
the depth maps as raw files containing floating point depth

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0 2 4 6 8 10 12 14 16 18 20

’point1’
’point2’
’point3’
’point4’

Figure 6: Weights of different cameras at 4 points shown.
X axis gives D+TR number and Y axis its weight

values. The depth and image values were obtained after ren-
dering the 3D model and reading back both the image and
the Z-buffer.

We also tested the scheme on real data of an instant of
the breakdance sequence from the Interactive Visual Media
group of Microsoft Research. This data set has 8 D+TRs
from viewpoints that are shifted horizontally. The depth
maps were computed from a stereo program and were not
perfect [22]. Since the coverage of the scene is sparse, the
flexibility in choosing the new view without holes is limited.

Figure 7 shows 3 random views of the synthetic indoor
scenes. They were rendered using implicit triangulation
method and blending top 6 views at each pixel. The fig-
ure also shows the breakdance instant from three new view-
points. The quality of generated viewpoints is quite good,
especially for the synthetic scene. The D+TR models of
the breakdance sequence has problems as there are a few
regions that are not visible to any of the 8 cameras. Expo-
nential weighting was used, which provides for smooth new
views. The rendered quality is good for synthetic views but
effects of poor depth maps can be found on the real images,
especially on the floor.

Figure 8 highlights one important aspect of capturing a
real world scene using cameras. The image captured by
a camera could have different gains and offsets due to the
difference in settings of the camera as well as the digital
capture system. When images from two such cameras are
merged to form a new view, the mismatch in the images can
appear as artificial edges in the generated image. We can
see this on the table top in Figure 8.

5. Discussions and Conclusions

In this paper, we analyzed the depth+texture representation
for image based rendering. We presented the advantages of
the representation and showed results of rendering for syn-
thetic and real scenes. This representation holds promise as

Figure 7: A few new views of the synthetic and real scenes.

structure recovery using cameras has become practical. It
is possible to merge the multiple depth maps into a single
global model which is analogous to a conventional graphics
model [5]. The following properties make D+TR particu-
larly suitable for IBR.
Locality: A scene rendered using the D+TR is correct if the
new view direction is at the origin of the local model or very
close to it, even if the depths are inaccurate. Thus, using a
combination of D+TR models can create faithful views of
the scene even if the underlying depth maps are not accu-
rate. Merging the D+TR models to a global model com-
putes a consensus model. Such a model will contain distor-
tions which will be visible from all points of view. Locality
is advantageous to IBR. The structure recovered from a far-

Figure 8: Mismatch in colour between two views results in
artificial edges and other artifacts in the generated view.

off viewpoint and direction should have minimal impact on
a generated view, if any. This is easily achieved using D+TR
models as each represents a local structure of the scene. A
small number of them from the same neighbourhood can be
used to make up for holes when the viewpoint shifts.
Model Size: View frustum culling is among the first steps
to be performed while rendering large models. The D+TR
models contain only visible parts of the scene and need no
culling. The locality of D+TRs ensure that the amount
of geometry to be rendered is low. Thus, the computa-
tional resource requirement using D+TR rendering could
be a lower. The representational complexity of the model
could be lower for a merged, global model. The D+TR
could be bulky as adjacent views share a lot of informa-
tion. It should be possible to compress the D+TR models
by taking advantage of the redundancy.
Compression: Compression is an aspect of this represen-
tation that need special attention. The representation lends
itself to compression easily since the scene is described re-
dundantly in multiple views. The compression of the depth
maps and texture images have to be done differently as each
represents qualitatively different signals. Compression of
the depth maps as images produces poor results as image
compression is tuned to remove psychovisual redundancy
[8]. We are currently working on a compression scheme
that takes into account the properties of depth maps and the
constraints of the multiview structure.
Distribution of D+TRs: How many D+TRs are required to
represent a given scene adequately? An understanding of
this issue helps in planning the scene capture. Each D+TR
provides a sample of the 3D world from its location. Ob-
viously, the sampling has to be dense near the areas of fine
scene structure. The quality of rendered views is likely to
suffer when using depth maps that are quite far. This is an
issue that requires careful study.

These properties make the D+TR representation suitable
for IBR. The representation could be used even for syn-
thetic models as the rendering requirements for a particular
view could be lower. We are currently exploring the fol-
lowing aspects of the representation. Blending functions
should be defined so that the influence of every view tapers
off smoothly. This will eliminate the artificial “edges” in
rendered view when the captured images differ in colour or
brightness. We are studying the compression of the depth
maps and the texture images together, taking advantage of
the properties and constraints of the geometry of the in-
put views. We have not paid sufficient attention to real-
time rendering of the D+TR models. This is critical for its
widespread use.
Acknowledgments: We thank Richard Szeliski and
Sing Bing Kang for various discussions on the topic. We
also thank the Interactive Visual Media group of Microsoft
Research for the data used in the real image example.

References

[1] E. H. Adelson and J. R. Bergen. The plenoptic function and
the elements of early vision. In Computational Models of
Visual Processing. 1991.

[2] H. Baker, D. Tanguay, I. Sobel, M. E. G. Dan Gelb, W. B.
Culbertson, and T. Malzbender. The Coliseum Immersive
Teleconferencing System. In International Workshop on Im-
mersive Telepresence (ITP2002), 2002.

[3] C. Buehler, M. Bosse, L. McMillan, S. J. Gortler, and M. F.
Cohen. Unstructured Lumigraph Rendering. In SIGGRAPH,
2001.

[4] S. Chen and L. Williams. View Interpolation for Image Syn-
thesis. In SIGGRAPH, 1993.

[5] B. Curless and M. Levoy. A Volumetric Method for Building
Complex Models from Range Images. SIGGRAPH, 1996.

[6] P. E. Debevec, C. J. Taylor, and J. Malik. Modeling and Ren-
dering Architecture from Photographs: A Hybrid Geometry
and Image-Based Approach. In SIGGRAPH, 1996.

[7] S. J. Gortler, R. Grzeszczuk, R. Szeliski, and M. F. Cohen.
Light Field Rendering. In SIGGRAPH, 1996.

[8] R. Krishnamurthy, B.-B. Chai, H. Tao, and S. Sethuraman.
Compression and Transmission of Depth Maps for Image-
Based Rendering. In ICIP, 2001.

[9] K. N. Kutulakos and S. M. Seitz. A theory of shape by space
carving. IJCV, 2000.

[10] M. Levoy and P. Hanrahan. Light Field Rendering. In SIG-
GRAPH, 1996.

[11] W. R. Mark. Post-Rendering 3D Image Warping: Visibility,
Reconstruction, and Performance for Depth-Image Warp-
ing. PhD thesis. University of North Carolina, 1999.

[12] L. McMillan. An Image-Based Approach to Three-
Dimensional Computer Graphics. PhD thesis. UNC, 1997.

[13] L. McMillan and G. Bishop. Plenoptic Modelling: An
Image-Based Rendering Algorithm. In SIGGRAPH, 1995.

[14] P. J. Narayanan. Visible Space Models: 2 �� -D Representa-
tions for Large Virtual Environments. In International Con-
ference on Visual Computing (ICVC99), 1999.

[15] P. J. Narayanan, P. W. Rander, and T. Kanade. Constructing
Virtual Worlds Using Dense Stereo. In Proc of the Interna-
tional Conference on Computer Vision, Jan 1998.

[16] S. Rusinkiewicz and M. Levoy. QSplat: A multiresolution
point rendering system for large meshes. SIGGRAPH, 2000.

[17] D. Scharstein, R. Szeliski, and R. Zabih. A taxonomy and
evaluation of dense two-frame stereo correspondence algo-
rithms. IJCV, 2002.

[18] S. M. Seitz and C. R. Dyer. View Morphing. In SIGGRAPH,
1996.

[19] H.-Y. Shum and L.-W. He. Rendering with concentric mo-
saics. In SIGGRAPH, 1999.

[20] H. Towles, W.-C. Chen, R. Yang, S.-U. Kam, and H. Fuchs.
3D Tele-Collaboration Over Internet2. In International
Workshop on Immersive Telepresence (ITP2002), 2002.

[21] G. Turk and M. Levoy. Zippered Polygon Meshes from
Range Images. In SIGGRAPH, pages 311 – 318, 1994.

[22] C. L. Zitnick, S. B. Kang, M. Uyttendaele, S. Winder, and
R. Szeliski. High-quality video view interpolation using a
layered representation. In SIGGRAPH, 2004.

