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Abstract

Despite its wide applicability in scientific computing,
the linear time fast multipole method (FMM) with prov-
able error bounds has not been used extensively in com-
puter graphics. This paper presents – to our knowledge –
the first application of FMM to the problem of global illu-
mination. The light transport kernel is broken into multi-
pole and local expansions and required transformations for
these expansions are provided. We also provide an adaptive
octree based visibility algorithm. We have implemented our
algorithm using the adaptive version of FMM and provide
empirical results for the same.

1. Introduction

Global illumination – the simulation of the physical pro-
cess of light transport – is an extremely complicated prob-
lem due to the presence of a large number of variables. This
problem has been considered for several years with interest-
ing methods like photon mapping, wavelets & hierarchical
radiosity, and progressive refinement.

Computational science and engineering is replete with
problems which require the evaluation of pairwise inter-
actions in a large collection of particles. Direct eval-
uation of such interactions results in O

�
N2 � complexity

which places practical limits on the size of problems which
can be considered. Techniques that attempt to overcome
this limitation are labeled N-body methods. The N-body
method is at the core of many computational problems,
but simulations of celestial mechanics and coulombic in-
teractions have motivated much of the research into this.
Numerous efforts have aimed at reducing the computa-
tional complexity of the N-body method, particle-in-cell,
particle-particle/particle-mesh[11], and treecodes[1, 2] be-
ing notable among these. However, the first numerically-
defensible algorithm[5] that succeeded in reducing the N-
body complexity to O

�
N � was the Greengard-Rokhlin Fast

Multipole Method (FMM)[6, 7, 3]. The FMM, in a broad
sense, enables the product of restricted dense matrices with
a vector to be evaluated in O

�
N � or O

�
N logN � operations,

when direct multiplication requires O
�
N2 � operations.

1.1. Contributions

A new algorithm for solving the global illumination
problem has been given here.

� We present (Section 2) the mathematical apparatus re-
quired to apply the linear-time adaptive FMM algo-
rithm to diffuse objects. Five mathematical results
with respect to the core radiosity equation under full
visibility are shown in this context. If the BRDF [13]
is presented as a table lookup (a common practice),
then the method can be extended to non-diffuse ob-
jects. The linearity parameter N is with respect to a
“particle” version of the scene and is related to the
amount of complexity in the shading patterns that one
might desire.

� The visibility function is highly discontinuous and,
like the BRDF, does not easily lend itself to an ana-
lytical FMM formulation. Thus the nature of this com-
putation is Ω

�
n2 � for n primitives, which depends on

the geometry of the scene. We present a new visibility
algorithm (Section 5) to handle the unoccluded FMM
solution mentioned above.

Qualitative and quantitative results are shown in Sec-
tion 6.

2. The Radiosity Kernel

For simplicity, we first present the mathematical frame-
work when the radiosity kernel is used (the visibility func-
tion is treated later in Section 5).



2.1. Receiver Matrices and Source Matrices

The key task in the FMM method is to factorize the ker-
nel into terms containing the source and terms containing
the receiver. To this end, we rewrite the rendering equation
at a surface point x due to an area Ay as
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Figure 1. Geometry and notations used in this paper.
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Here, for a surface point x, B

�
x �� �rx, and �nx denote its radios-

ity, position, and normal to the surface respectively.
For notational convenience, we define the receiver ma-

trices RM, the source matrices SM, and an operator � as
(rx denotes the 3x1 matrix form of �rx):
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2.2. Multipole Expansion

If we denote the spherical coordinates of �rx by�
rx
 θx
 φx

� , then our first result makes use of [10] to write
(for ry � rx),
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where
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n
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and Y m
n are the normalized spherical harmonics. Substitut-

ing (2), and (4) in (1) and rearranging terms, we get the
multipole expansion
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The intuition for this step is shown in Figure 2.
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Figure 2. By associating a constant number of coeffi-

cients at center O, we can calculate the energy received

by x from a number of differential emitters. The value

of the coefficients depends upon the location of these

emitters on patch.

We now notice that multipole coefficients are additive;
this enables us to consider the effect of several patches as
shown in Figure 3. For several patches A1

 A2
 A3

 �,�-� Ak, the
multipole coefficients Mm

n j

�
Ay

� can be accumulated once and
(5) can be used to directly evaluate the radiosity at different
values of x.
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Figure 3. Multipole coefficients are additive.

For practical implementation, the summation to infinity
must be truncated to some p. If Bp �

x � is the radiosity com-



puted by truncating the outer summation to p terms, the er-
ror incurred is of the form (from [10])�B �
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This however is a conservative bound – we provide empir-
ical results (Figure 11) to show that truncating p � 2 gives
acceptable results.

2.3. Local Expansion

For rx � ry, we derive [12] an expression similar to the
multipole expansion by interchanging the rx and ry terms in
(4) called the local expansion
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Our intuition behind this formulation is explained in Fig-
ure 4.
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Figure 4. By associating constant number of coefficients

stored at center O, we can calculate the energy received

by different receivers. The value of coefficients depends

upon the location of source patch

Similar to the multipole coefficients, the local coeffi-
cients Lm

n j are also additive as shown in Figure 5.

O O

Figure 5. Local coefficients are additive.

2.4. Multipole Translation

We have shown [12] that the multipole coefficients of a
set of patches in a coordinate system centered at O � , denoted
by Mm

n j

�
O � � can be expressed in terms of the multipole co-

efficients of the same set of patches in a coordinate system
translated to O, denoted by Mm

n j

�
O � . The relation is not pre-

sented here for the sake of brevity.

2.5. Local Translation

We have also shown [12] that the local coefficients of
a set of patches in a coordinate system centered at O � , de-
noted by Lm

n j

�
O � � can be expressed in terms of the local co-

efficients of the same set of patches in a coordinate system
translated to O, denoted by Lm

n j

�
O � . The relation is not pre-

sented here for the sake of brevity.

2.6. Multipole to Local Translation

A crucial part of FMM is the conversion of multipole
coefficients at a given center O into local coefficients at an-
other center O � . We have shown (illustrated in Figure 6)
[12] that
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3. Quadrature

Since the terms inside the integral in (7) are polynomial
across the surface, we can use Gaussian quadrature to calcu-
late exactly the integral to sufficient accuracy. If the area Ay
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Figure 6. The multipole to local translation converts the

multipole coefficients of a set of N patches into local

coefficients for a set of M receiver points.

is represented by the set of quadrature points y with weight
w

�
y � , we have
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If we define the multipole coefficients (and similarly local
coefficients) for a quadrature point y as
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we can replace the interaction between surfaces and points
(in Equation 7 for example) as between points only. This
interaction is termed as a particle interaction. Evaluating
the multipole expansion of a set of surfaces at a particle y
becomes equivalent to evaluating the multipole expansion
of all the quadrature points at y. The translation properties
shown previously will continue to hold for multipole and
local coefficients of particles.

4. The Algorithm

The algorithm presented below assumes a fixed number
of mutually visible triangles of area sufficient in order to ap-
proximate the integral in (5) by Gaussian quadrature to high
degree. (When occlusion is present in the scene, the only
change is that interaction list is modified as in Section 5.)

Step 1 Setup
All triangles are converted into Gaussian quadrature points.
All points are arranged in an adaptive octree such that no
leaf contains more than s points. s is called the group-
ing factor. With each box, we associate two set of disjoint
boxes:

� near neighbors of a box b are boxes that share a com-
mon boundary point. Points in these boxes do not sat-
isfy the distance constraint in (5).

� interaction list of a box b are the children of the near
neighbors of the parent of b — children who are not
near neighbors of b itself.

In addition, leaf boxes have the following set associated:

� local interaction list of a box b are the leaves in the
descendants of the near neighbors of b, which are not
near neighbors of b themselves. These are boxes which
are too close to interact via a multipole-local transla-
tion (Section 2.6) but the local expansion coefficients
due to individual points in these leaves can be evalu-
ated and accumulated at the box as shown in Figure 4

� multipole interaction list of a box b is the inverse of the
local interactions list. These boxes are close enough
to prevent their multipole expansion from being con-
verted into a valid local expansion. However, their
multipole expansion can be evaluated at each particle
in b as shown in Figure 2.

Step 2 Multipole Coefficients
For each leaf box in the octree, we calculate the multi-

pole coefficients of all points contained in the box about its
center using (12). Then, for each level, starting from the
penultimate level, we calculate the multipole coefficients at
each box in that level by translating and accumulating the
multipole coefficients of its children (Section 2.4).

Step 3 Downward Pass
For each level, starting from the second, the local coef-

ficients at each box b are calculated by converting the mul-
tipole coefficients of boxes in the interaction list of b into
local coefficients about b’s center using (11). Additionally,
the local expansion coefficients obtained from the individ-
ual points contained in the local interaction list are aggre-
gated.

Step 4 Evaluation
For each leaf b in the octree, for each evaluation point

y � b, the local expansion about the center of b is evalu-
ated at y using (8). Additionally, the multipole expansion
due to boxes in the multipole interaction list are evaluated
at y using (5). Direct computations if necessary, are also
aggregated for points in b.

We iterate over these steps as in shooting [4] till a suf-
ficient convergence is reached. Note that in the final step
of the final iteration, the evaluation points can be separate
from the quadrature points.

5. Handling Occlusion

Visibility in FMM is complicated by the fact that it is a
point to point based phenomenon and not from box to box.
When visibility is introduced in (1), the transfer of energy
should be handled differently from the method in Section 4.
Specifically, each particle receives energy from every other
particle either directly, or through the surfaces in the inter-
action list of its ancestors. The key idea is to modify the
interaction list much the way the adaptive version of the



Procedure Modify(Box A) �
visible interactionlist(A)=Null

for each box B � old interationlist(A) �
state=visibility(A,B)
if equals(state,valid) then

visible interactionlist(A).Include(B)
else if equals(state,partial) then

� if(notLeaf(A))
for each a � child(A)
for each b � child(B)

interactionlist(a).Include(b)�����

Procedure Generate(Box A) �
Modify(A)
for each a � child(A)

Generate(a)
�

Figure 7. This is the algorithm that generates the visi-

ble interaction list for each node in the octree

FMM works. If the surfaces in a box c in the interaction
list of box b are completely visible from every particle in b,
then the visibility state of the pair (b,c) is said to be valid.
If, on the other hand, no surface in c is visible from any par-
ticle in b, the visibility state of the pair (b,c) is said to be
invalid. The box c is dropped from the interaction list since
no exchange of energy is permissible. Finally, when the
visibility state is partial, we postpone the interaction. Al-
gorithm Generate (Fig. 7) which calls Modify ensures
that the postponed interaction happens at the lowest possi-
ble depth (the root is at depth 0) for maximum efficiency.
The complexity of these routines depends on the visibility
function discussed in Section 5.1.

The justification in the use of the visible interaction list
in the FMM algorithm presented in Section 4 follows from

Lemma 5.1 If B is in interaction list of A then b � child
�
B �

is eligible to be in interaction list of a � child
�
A �

Proof: Omitted in this version. ��

5.1. Computing Box to Box Visiblity

Finding the state of visibility between two large sized
boxes containing some particles requires knowing the vis-
ibility state between the constituent particles. As in
the FMM, this becomes tractable when the box pair be-
comes so tiny that there are very few particles in each

Procedure visiblity(Box A, Box B) �
visible=0;
for each cell a � leafcell(A)
for each cell b � leafcell(B)
�
c1=center(a)
c2=center(b)
if Positive(DotProduct(c2 � c1,av normal(a)))

and Positive(DotProduct(c1 � c2,av normal(b)))
then do
� result=shootandDetect(a,b)
if Equals(result,0) then do, Increment(visible,1)�

�
if Equals(visible,0) return(nonvisible)
else if Equals(visible,leafcell(A).size*leafcell(B).size)

return(visible)
else return(partial)�

Figure 8. Finding the state of visiblity between two big

boxes A and B.

box. The visibility state can then be computed by
shootAndDetect() in O

�
r � time for these tiny boxes

termed cells. O
�
r � is empirically determined to be O

�
1 �

since the precise way we do this uses the undivided input
polygons, a quantity that is negligibly small compared to
N, the number of quadrature points. This information is
propagated to the larger sized boxes in procedure visiblity(),
shown in Figure 8.

5.2. Computation Complexity: Visibility

Consider the call visibility(A,B) for boxes A and
B which results in a call to shootAndDetect(a,b)
for cells a and b. If there was no postponement
of the interaction between A and B, then clearly
shootAndDetect(a,b) will not be called again. On
the other hand, if there was partial visibility, shootAndDe-
tect(a,b) will be called again. Therefore the number of calls
to shootAndDetect() for children of A is proportional to the
total number of boxes postponed in the interaction of list of
A.

Let Pi be the expected number of boxes at level i post-
poned by a box A at level i. Thus the total number of boxes
in the interaction list is 189 ' 8Pi � 1. For box A, the number
of calls to shootAndDetect() is

�
189 ' 8Pi � 1

� n2

82i . For pur-
pose of analysis, it is useful to define α to be the fraction in
the equation below



(a) The Cornell room with one
block.

(b) An alternative Scene.

(c) The original Cornell room. (d) The unoccluded Cornell
room.

Figure 9. The FMM in action.

Pi
� α

�
189 ' 8Pi � 1

� (13)

Note that P0
� P1

� 0 and P2
� 189α . Solving the recursion

in (13) we have

Pi � 1
� 189α

� �
8α � i � 2 � ( �

8α � 1 �

The overall complexity of Generate(root) (by
amortized analysis) is

Σlogn
i � 3

�
189 ' 8Pi � 1

� 8i � n2 ( 82i

The complexity of the construction of the visibility inter-
action list is thus between O

�
n2 � and O

�
n2 log

�
n � � .

5.3. Computational Complexity: Light calculations

For the case with occlusion, the algorithm in Section 4 is
run using the visible interaction list instead of the interac-
tion list. The upward pass is unaffected.

For the full visibility case, the postponement factor α is
zero and thus the time complexity will remain O

�
N ' n � ,

where N is the number of particles and n is the number of
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Figure 10. The running time for adaptive FMM for different
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cells. If the postponement factor α is 1, it means that no cell
is visible to any other cell at any level. No transfer of energy
is required, and hence complexity will remain O

�
N ' n �

(traversing the tree once). In the worst case, where there
is complete postponement at upper levels and only some re-
jections due to non-visibility at leaf levels the complexity
is about O

�
N ' n2 � . So, the complexity will fluctuate from

O
�
N ' n � to O

�
N ' n2 � , depending upon the postponement

factor. This postponement factor is completely determined
by the geometry of the scene and octree construction,i.e.,
subdivision of the scene into subparts.

6. Results

Various scenes have been rendered in Figure 9 using our
FMM algorithm. For purposes of timing, we tested the al-
gorithm for the Cornell room shown in Fig. 9(d) varying
the number of input triangles. Fig. 10 plots the time taken
by the algorithm at several truncation numbers vs. the time
taken by the brute force method and show the linear time
nature of our method. Fig. 11 shows the average relative
error incurred for varying truncation numbers.

Fig 12 shows the running time observed for different
scenes having different values of the postponement factor
α . It also includes the visibility computation time.

7. Conclusion

The FMM method is elegant because it trades of error
with quality in a disciplined quantitative way. In this paper,
the kernel of the energy balance in the rendering equation
has been made conformant to the FMM by deriving the near
and far field expansions. We have also presented derivations
for the translation operators of the expansion coefficients.
The radiosity problem over surfaces is thus reduced to a so-
lution over points, resembling point based rendering. The
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use of Gaussian quadrature rules enables us to use the stan-
dard FMM. The new algorithm is expected to be useful for
scenes containing highly tessellated models (a huge value of
N) since a large number of polygons in a cluster can be rep-
resented by a constant number of coefficients thereby giving
a O

�
N � light computation algorithm. In particular, we have

implemented both adaptive and non-adaptive versions of the
FMM.

We have also given a new visibility algorithm whose
complexity is independent on the number of FMM particles
N. The visiblity calculation can be done as a ‘preprocess-
ing’ step. When done this way, changing the lighting effects
in the room can be done easier than other methods. BF re-
finement of hierarchical radiosity[9] requires the modifica-
tion of the link structure after the upward and downward
pass is run.

Several improvements could be possibly realized in the
current technique. The multipole expansion is derived by
expanding the numerator and denominator of the kernel sep-
arately. The large number of terms in the expansion of
the numerator explode the number of terms needed to ac-
curately represent the kernel. There could possibly be an

expansion which expands the kernel as a whole and not in
separate parts. A possible reduction in the number of terms
for the same accuracy will greatly increase the efficiency of
this method.

In our implementation of FMM, we have taken near
neighbors to be two boxes who share a boundary point.
There are generalizations of this definition to two boxes sep-
arated by k boxes[8]. These schemes will give very high
accuracy but may cause a performance hit.
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