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Abstract

We present a method to determine the 3D spatial locations
of joints of a human body from a monocular video sequence
of a Bharatanatyam dance. The proposed method uses do-
main specific knowledge to track major joints of the human
in motion from the two dimensional input data. We then
make use of various physical and motion constraints re-
garding the human body to construct a set of feasible 3D
poses. A dynamic programming based method is used to
find an optimal sequence of feasible poses that represents
the original motion in the video.

1. Introduction

Markerless motion capture requires solutions to two prob-
lems; a tracking problem of identifying and disambiguat-
ing individual body parts from the rest of the image, and
a reconstruction problem of estimating the 3D pose of the
figure from 2D data. The challenge in tracking is to deal
with background clutter and ambiguities in image matching,
while the challenge in reconstruction is to compensate for
the loss of 3D information that happens during recording.
In this work, we have developed motion capture techniques
for a specific domain of Bharatanatyam dance, a classical
dance form of India.

There are two major human motion tracking methods:
multi-view vision, where more than one camera is present,
and monocular vision where only a single camera is used.
We try to tackle the harder problem using only a single cam-
era.

Tracking of the human body in two-dimensional space is a
well studied topic. However, tracking of individual body
parts remains an ill-conditioned problem. Various hurdles
haunting the problem include irregular shape of the human
body, self-occlusion, clothings and makeup, shadows, and
a high number of degrees of freedom (DOFs). Because of
these constraints, it is currently not possible to track differ-

ent human body parts from a video automatically in a re-
liable manner. Hence the general problem remains largely
unsolved. However, it is possible to solve the problem for
specific applications using domain specific knowledge. We
develop a semiautomatic method based on the uniformity of
traditional dress of Bharatanatyam to track the body parts
using skin color detection. The tracked data thus obtained
is not always accurate and manual intervention is required
in some cases.

The main challenge in the reconstruction of articulated
body motion is the large number of degrees of freedom to
be recovered. A realistic articulated motion of the human
body usually has at least 28 degrees of freedom. Search al-
gorithms — deterministic or stochastic — that search such a
space without constraints, fall foul of exponential compu-
tational complexity. This paper uses additional constraints
for solving the problem in realistic time. We make use of
constraints in the form of prior assumptions, motion esti-
mation techniques, and view constraint restriction to break
down the problem to a tractable algorithm.

More specifically, since our input comprises of data from
a single camera, there exist fundamental ambiguities in the
reconstruction of the 3D pose. The well known reflective
ambiguity under orthographic projection results in a pair
of solutions for the rotation of a single link out of the im-
age plane. Once the actual length of each link is known,
these ambiguities reduce to twofold forward-backward flip-
ping ambiguities. The full model thus has 2#1"ks possible
solutions. We make use of simple inverse kinematics to
systematically generate the complete set of such configura-
tions and hence to investigate the full set of associated cost
minima. A dynamic programming algorithm is proposed
to traverse this configuration tree and pick one of the most
likely motions. More scene constraints are introduced so as
to prune inconsistent configuration and thereby speeding up
the search.

The rest of the paper is organized as follows. Section 2 sum-
marizes some of the major work in the area of motion cap-
ture. Section 3 looks at the tracking aspect of the problem.



In Section 4, we propose a graph based algorithm which is
augmented with probabilistic model for reconstructing 3D
model from tracked data. We present our results in Section
5. Section 6 concludes the paper.

2. Related Work

Previous work in the field of motion capture has been
mainly dependent on cues like markers or multiple views,
while little work has been done in the field of single view
markerless motion capture.

Tracking which forms an important ingredient of our
method has been a well studied topic. Blob trackers,
contour trackers and optical flow based tracking methods
are most widely used tracking techniques. Blob trackers
[23, 10] extract low level information like color and pixel
intensity. This information is subsequently grouped or in-
terpreted according to the higher level knowledge about the
scene. Our approach is similar to one used in [23]. The
optical flow based algorithms [2, 19] extract a dense ve-
locity field from an image sequence assuming that image
intensity is conserved during the displacement. This con-
servation law is expressed by a spatio-temporal differential
equation which is solved under additional constraints of dif-
ferent form. The feature based techniques [20] extract local
regions of interest (features) from the images and identify
the corresponding features in each image of the sequence.
Contour-based object tracking [12, 1] requires object detec-
tion only once. Tracking is performed by finding the object
contour given an initial contour from the previous frame.

An extensive survey of human motion capture techniques
has been done by [16], which has references to more than
130 major publications in the field. Considerable amount of
work has already been carried out for motion capture system
involving multiple cameras. [13] generates 3D voxel data
from multiple cameras placed at strategic locations to esti-
mate pose, whereas [6][14] use silhouettes generated from
multiple views to track an articulated body in 3D.

[15] augments silhouettes with human body depth and col-
lision constraints to estimate the pose of arms only. [9] pro-
poses a method for estimating 3D motion of an articulated
object. It divides the object into simpler parts, estimate the
motion of simplest part and then propagate the results to the
upper levels.

[5] introduces an interactive system which combines con-
straints on 3D motion with input from a human operator
to reconstruct sequences in 3D. They use an iterative batch
algorithm which estimates the maximum a posteriori tra-
jectory based on 2D measurements subject to a number of
constraints, like kinematic constraints, joint angle limits,
dynamic smoothing, and intermediate frames specified by
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Figure 1. Some traditional

Bharatanatyam dress.

examples of the

the user. [17] makes use of a motion library to resolve the
depth ambiguity in recovering the 3D configurations from
2D features. [2] uses exponential maps and twist motions
to extract 3D human configurations from a single-camera
video sequence.

The weakness of kinematic constraint in monocular track-
ing can be addressed by using dynamic models to constrain
the motion, and complex statistical methods to jointly rep-
resent the ambiguity in registration and reconstruction. [21]
uses particle filtering with important sampling based on ei-
ther a learned walking model or a database of motion snip-
pets, to focus search in the neighborhood of known trajec-
tory pathways. [7] proposes an annealing framework in a
multiple camera settings. During annealing, the search for
parameters is driven by noise proportional with their indi-
vidual variances.

One of the most major work of recovering structure from
motion is the factorization method developed by [22]. How-
ever this method assumes orthography, and is applicable
only for rigid body. Considerable amount of subsequent
work has been done to extend factorization method to non
rigid and non-orthographic cases. [18][4].

3. Tracking

In our work, we have tackled the tracking problem for the
domain of Bharatanatyam, a classical dance form of India.
We make use of specific information about the costume of
the dancer.

The traditional dress worn by the dancer covers her entire
body except the face, forearms, and the feet. Fig.1 shows a
couple of examples of such dress. One important feature of
the dress is the golden belt (seen in color print out) around
the waist region. This belt is a part of the traditional dress
and is always present.

In our implementation, we also made some standard as-
sumptions such as only a single person, who is always in
the view of camera, is present in the scene. The background



is almost static and the camera is assumed to be station-
ary. Severe lighting changes are prohibited. These assump-
tions make the task of background subtraction easy. The
distance between camera and the dancer is large. Thus we
are justified in assuming the orthographic projection for re-
construction phase. We next discuss the human model used
and selection and tracking of key body features.

3.1. Human Mod€

We can use a modelless approach for tracking in which case
the tracking is done solely on the basis of shape and silhou-
ettes, or we can use a 2D or 3D human model. Advantages
of using a human model are that the state of the system at
any point of time can be easily stored and accessed, and also
the incremental addition of information becomes easy.

Volumetric 3D model would be a weak model as we use
monocular video sequences. Using silhouettes makes it dif-
ficult to handle self-occluding body parts, especially arms.
Stick figure representation, where the major joints are rep-
resented as points and the bones connecting them as lines,
as shown in Fig. 2(a), can very well model the human body
in 3D. We use the manipulated 2D data to feed the model.
In our case, we are restricting our model to the upper part
of the body. Fig. 2(b) shows the model we use.

Head
"""""" Shoulder
Elbow

Wrist
Waist

(a) Complete
stick-fi gure
model

(b) Reduced model

Figure 2. The human model’s stick figure representation.

3.2. Key features

We mainly use skin color model to locate important fea-
tures. We track the location of head, neck, shoulders,
wrists, and belly to an acceptable level of accuracy using
this model. The position of elbows and shoulders are ap-
proximated by making use of anthropometric information.
It should be noted that the end effectors have the highest pri-
ority. End effectors are the end points of human body parts
like arms, legs, etc. Examples are head, hands, and feet.
The reason for giving a high priority to the end effectors is
that the configuration of intermediate body parts can be ap-
proximately calculated from the end effector configuration,

while the reverse is not true.
3.3. Feature Tracking

We use the skin color model similar to the one used by [8]
for obtaining skin color regions. After we get the skin re-
gions, we label the detected regions as the corresponding
parts of the body. Incidentally the golden belt around the
waist of the dancer closely resembles the skin color and is
categorized as skin region. The output of skin detection
is post-processed by morphological operations which pro-
duces the blobs of skin regions. If the corresponding body
parts are well apart, these blobs would be separated. Each
of these blobs can then be approximated as an ellipse. The
endpoints of the major axis of each ellipse gives the end-
points (joints) of the corresponding link.

Problem occurs when the blobs get broken or merged.
Blobs may break because of bad image processing, while
they may merge because of proximity or occlusion. Broken
blobs can be reunited while fitting ellipses by making use of
local proximity information. Merged blobs can be separated
by keeping track of orientation of the merging ellipses. If
the major axes of both the occluding ellipses coincide, it is
very difficult to separate them apart. However, this is a rare
event in case of Bharatanatyam dance.

Using the above technique, we obtain the positions of head,
neck, elbows, wrists, and waist. However, the position of
the shoulders can not be obtained using this method. To lo-
cate the shoulders, we use a simple heuristic. It is observed
that in most of the cases, except when the body is tilted,
the position of the shoulders is exactly above the waist re-
gion endpoints and in horizontal line with the lower end of
the neck. Using this heuristic, we can estimate the posi-
tion of shoulders too, thus filling the entire human model
as desired. The tracked data obtained by the above method
is not very accurate. Hence we also need some manual in-
tervention. In addition, we make use of a fixed-lag Kalman
smoother [11] to filter out the erroneous data.

4. Reconstruction

After we get the 2D positions of all the joints, the next task
is to estimate the 3D information that is lost during record-
ing. Since we assume orthography for input data, we make
use of foreshortening as a clue coupled with some additional
heuristics to retrieve the lost information.

To make the problem simpler and tractable, we make use of
the following assumptions.

1. The camera is stationary and calibrated.

2. The camera is sufficiently away from the subject such
that we can safely assume orthographic projection. In



our test data, the camera is placed at around 10 meters
away from the subject.

3. The initial pose of the subject is also known.
4.1. Estimating absolute depths

In order to use foreshortening, we need to know the actual
3D lengths of all the links. This can either be done man-
ually or using anthropometric data. We have tried to find
the actual length from the video sequence itself. It is based
on the observation that given a sufficiently long video se-
quence, each link will become parallel (or nearly parallel)
to the plane of screen at least once.We further ensure the
consistency of our method by normalizing it with respect to
anthropometric data. For example, for left and right fore-
arms, we use maximum length of the two.

Once we have the true length of a link, potentially we can
decompose the orientation of the link to two possible cases.
One endpoint of the link will be displaced from its ref-
erence plane attached to the other endpoint, by a relative
value which is proportional to the difference of their z-
components. This difference, however, suffers from ortho-
graphic reflective ambiguity. That is, the actual depth of the
link may be in positive or negative direction. In both the
cases, the 2D projection would exactly be the same as seen
in figure 3.

Rear Front

Reference Plane

Figure 3. Reflective ambiguity under orthographic pro-
jection: Two 3D points can have same 2D projection.

4.2. Pose generation

Since each of the links considered has two possible 3D con-
figurations for a given 2D configuration and since adjacent
links are joined, there are 2#1"ks permutations of the overall
body configuration. We have to explore all these possibili-
ties for each frame. Figure 4 shows the formulation of these
2#inks permutations. We consider the neck as the root of the
skeleton, which will not undergo any change in configura-
tion throughout. Left shoulder may be in front or rear of
the reference plane attached to the neck. Same is the case
with the right shoulder, making a total of four possibilities
considering only shoulders. At the lowest level of the tree,
we will have 271K [eaves.

Of course, not all of these configurations are physically fea-
sible. We need to add constraints, which will allow only

Neck

Left Shoulder

Right Shoulder  front

front  rear

Figure 4. 2#inks possible permutations: At each joint, we

have 2 possibilities.

those poses which are physically attainable by humans, in
order to prune this exponentially huge set of permutations.
We use various kinds of constraints viz. model, joint angle
limit, and collision constraints.

4.2.1. Model constraints

Model constraints enforce connectivity between adjacent
links and link length constancy. These constraints are very
basic. To enforce them, we have to use a 3D kinematic
model which satisfies these constraints. Using such 3D
kinematic model for the given 2D measurements itself will
restrict the number of possible solutions to a finite number.

4.2.2. Joint Angle Limits

Each joint of the human body has a minimum and a maxi-
mum limit of angle of bend that is possible to achieve. For
instance, it is not possible to bend the arm at the elbow joint
below 10 degrees. However, such a pose might have been
represented in some of the permutations. This is taken care
of by joint angle limits. All poses, which have at least one
joint whose angle crosses either the maximum or the min-
imum limit, are marked invalid and are not considered for
further processing.

4.2.3. Collision Constraints

Because of solid nature of the body, one part of the body
cannot penetrate through another part. Collision constraints
ensure this behavior by checking whether any link collides
with any other link. To enforce these constraints, the stick
figure model is not enough; we need to represent each of the
link by a 3D structure like a cylinder or an ellipsoid.

Using the above constraints, we find all invalid poses and
remove them from any further processing. In our experi-
ments, we found that almost 70% of the 2i"ks poses were
invalidated by joint angle and collision constraints. Hence,
though the complexity of the algorithm will be exponential,
the main time-consuming processing will be done on only a
limited number of cases.



4.3. Graph Formulation

All the processes done till now work on individual frames
and will produce a set of all possible valid poses for each
frame. However, if we want to establish a valid 3D pose
sequence for some time duration, it is necessary to consider
the temporal dimension of the input. Given a valid pose x
in frame i and a valid pose y in frame i+ 1, it is not always
possible for a person to change body pose from x to y within
the time duration of one frame. We formulate this problem
as a graph problem, since it is very easy to visualize a pose
as a node and a transition between two poses as an edge
between corresponding nodes.

We form the graph in the following way. The graph basi-
cally has a layered structure with each frame being repre-
sented by a layer. Each valid pose at each frame is rep-
resented as a node in the corresponding layer. Edges are
established between nodes A and B in adjacent layers, if it
is possible to change pose from A in first frame to B in next
frame. Each of the edge carries a weight which represents
some metric of the transformation between the poses. Var-
ious metrics that are possible are change in angles, change
in depth, and angular velocity.

Now our problem reduces to finding a minimum weight
path from a node in first layer to a node in the last layer. This
can be done using standard dynamic programming tech-
niques like Viterbi algorithm

4.3.1. Calculating weights

Whenever the body moves, there is change in configuration
of some joints. This change may be in orientation, angle,
velocity, acceleration, or any combination of them. When
the body moves swiftly, these changes should not be sud-
den. We are exploiting an interesting observation that the
motion involved during the snippet where a link crosses its
reference plane is generally smooth [3]. Hence we can as-
sume acceleration associated with that link to be nearly zero
during this time interval.

4.3.2. Changein Velocity

During the movement, each joint angle has some angular
velocity associated with it. For smooth motion, these ve-
locities should not change drastically. i.e. the acceleration
should be as small as possible. Thus we can use sum of
accelerations as a merit to weigh the edges of the graph.

Let A(qc) denote the position vector of joint A at frame k.
AB(¢) denote the vector from joint A to joint B on a seg-
ment AB, all in body configuration ¢. Assume the interval
between two consecutive frames is At. Then the relative
translation velocity of the segment AB from body configu-

Figure 5. Graph used to represent the poses and their
transitions.

ration ¢ in frame k to another body configuration ¢ in
frame k + 1 is defined as

{[B(%+1)—B(%)]XI[A((n<+1)—A(<A<)]}

Vas (@ Gr1) =
[AB(fM-lA)—AB(‘PK)]
\4

The relative angular velocity and acceleration of segment
AB are defined as

waB (G, Gr1) = AB x Vs (¢, Ges1) 1)
and
(%+1,(ﬂ<+2gt—wAB(%(ﬂ<+1)| )

an (G, B 1, P 2) = 1228

respectively. A smooth angular motion of a body segment
during walking indicates a nearly zero angular acceleration.
An angular acceleration function associated with body con-
figuration @, (k+1, @2 can be defined as

fi (@B Ger1, Pa2) = ; |aaB (@, Ger1, Gr2)|  (3)

where the summation is taken over all body segments and
the magnitudes of angular accelerations are used for sim-
plicity. Our aim is to minimize this measure of angular ac-
celerations.

However, this increases the complexity of the algorithm
very much. Since in this case we have to consider all possi-
ble transitions between adjacent frames to calculate accel-
eration.

4.4. Velocity based estimation

Instead of calculating the absolute difference between two
quantities (depths or angles) of two poses, we can use the
known velocity at one frame to estimate the position of each
of the joint in the next frame.

Aest(@hr1) = A(@) + VALt (4)



Now, we find the difference between the estimated values
and the observed values. This gives us an estimate of er-
ror function at each frame. This error function is used as
weights for edges.

e=A(G1) — Aest(@r1) (5)

5. Results

We present some of the results obtained by us, in this
section. The first row of Fig. 6 shows some sample input
frames. The skin regions are extracted and largest blobs are
retained which are labeled to corresponding body parts, as
seen in the second row. Ellipses are fitted around each of
these regions as can be seen in the third row. The major
axes of these ellipses give the joint locations. Using these
joint locations, the stick-figure representation of the body
is made. The fourth row shows the stick-figures. These
figures are in 2D. The reconstruction step outlined in
the paper estimates 3D coordinates for each of the joint
creating a 3D model. The last row of the figure shows
the same frames from a different viewpoint to confirm its
3-dimensionality.

6. Final Remarks

We have presented a computer vision based method to use
the domain specific knowledge to obtain 3D configuration
of a human body from monocular video sequence. We have
implemented the system only for the upper body. How-
ever similar concepts hold for the entire body. The cues
required for tracking the lower limbs may be different. Es-
pecially, it is difficult to obtain the position of knees because
of loose-fitting dress. The reconstruction algorithm remains
the same for the full body motion capture, though its run-
ning time may increase heavily because of non-linear nature
of the algorithm.
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