
Multi-Dimensional Transfer Function Design for Scientific Visualization

Sangmin Park Chandrajit Bajaj
Univ. of Texas at Austin Univ. of Texas at Austin

smpark@cs.utexas.edu bajaj@cs.utexas.edu

Abstract

Direct volume rendering of field data can be accom-
plished through a correct choice of transfer functions that
map data values to visual properties such as transparency
and color. Such one-dimensional transfer functions, espe-
cially when specified through trial and error selection, of-
ten prove inadequate for producing correct and informative
visualizations. In this paper, we consider multi-dimensional
transfer functions for scalar fields which utilize field gradi-
ent magnitude and second derivative information, in addi-
tion to data values, to discriminate features with overlap-
ping ranges. Our automatic method is further distinguished
by our setting of voxels opacities, based on their spatial dis-
tance to boundaries in the specified volumetric scalar field
data.

1. Introduction

One of the main advantages of direct volume render-
ing is to visualize volume data without generating geomet-
ric structures. It simply converts each volume element (or
voxel) to visual properties such as opacity and color and
composes the properties into an image. The converting
work is usually done by transfer functions. Good trans-
fer functions produce good images that visualize interest-
ing structures in volume data while removing uninteresting
area. However, it is known that finding good transfer func-
tions is one of the hardest problems in the direct volume
rendering area.

The multi-dimensional transfer functions are the math-
ematical functions of several parameters such as intensity,
gradient magnitude and the second derivative. Since the
functions are hard to control by hand, many people still
use intensity-based one-dimensional (1D) functions. Kindl-
mann’s survey [6] reviews many types of the functions and
describes the reasons why it is not a trivial work. It also
explains that the functions can be generalized by increas-
ing the function’s domain. Kniss and et al. [8] shows the
advantage of multi-dimensional functions against 1D func-

tions. Even though multi-dimensional functions are hard to
control, the functions are still useful for separately visualiz-
ing several features that intensity ranges are overlapped, but
other data (i.e. gradient) are distinguishable.

When multi-dimensional functions are designed, inten-
sity has been used for the first axis. The second axis of the
functions has been gradient in [11], [7], [8], [9], and [10]
without any doubt for more than a decade. The main rea-
son is that some region of volume data with high gradient is
likely to have a boundary (or a feature). For the third axis,
the directional second derivative along gradient direction is
used in [8], [9], and [10].

Kindlmann and Durkin [7] suggests a semi-automatic
method to find boundaries in the 2D space of intensity and
gradient through histogram volume inspection. Kniss and et
al. [8] developed a convenient interface with manipulation
widgets to search boundaries in 3D space of intensity, gra-
dient and the directional second derivative. However, the
method suggests a way to search boundaries using gradi-
ent and the second derivative that have no direct boundary
information.

Once scalar volume datasets (i.e. medical data) are gen-
erated, the role of each voxel is fixed in terms of boundary.
In other words, some of the voxels are exactly on a bound-
ary, some are a part of the boundary with some thickness
and others are not related to any boundary. If we know the
role of each voxel, then transfer function generation will be
more intuitive and easier. In this paper, we present a method
to decide a voxel role in terms of boundary and suggest an-
other data values for the second axis and the third axis for
multi-dimensional transfer functions.

The remainder of the paper is organized as follows. In
the next section, we review related work. In section 3, we
present a method to decide a voxel role in volume data in
terms of boundary. Based on the voxel roles, we suggest
new opacity functions in section 4. In section 5, The func-
tions are implemented using modern graphics hardware and
the rendering results are explained. Finally, we make con-
clusions and suggest a couple of future work in section 6.

2. Related Work

Levoy [11] suggested two-dimensional transfer func-
tions of intensity and gradient magnitude and suggested
semi-transparent multiple surface visualization. After the
research, multi-dimensional transfer functions have been
the function of intensity and gradient. Kindlmann and
Durkin [7] suggested semi-automatic generation of transfer
functions. They still used two-dimensional transfer func-
tions of intensity and gradient. The semi-automatic gen-
eration algorithm uses second derivatives to automatically
compute boundary thickness at some intensity and uses a
linear function to assign alpha values to the thickness. Kniss
and et al. [8] suggested three-dimensional transfer func-
tions and interactive interface widgets. The Kindlmann’s
survey [6] explains many kinds of transfer functions, but
all multi-dimensional transfer functions are the functions of
intensity, gradient, and the second derivative.

Distance map have been used for volume rendering in
[4] and [5] for the visualization of binary segmented vol-
ume data. The research gave us a hint on the multi-
dimensional transfer function design, since the distance
map has an interesting character like that: the zero-value
iso-surface of the distance map yields the object surface.

3. Boundary Detection and Voxel Roles

Many boundary detection (or edge detection) algorithms
have been developed in the image processing and pattern
recognition areas. One of the traditional edge detection
techniques is Canny’s method that finds the local maxima
along the gradient direction [2]. The most common edge
detection schemes include three operations: differentiation,
smoothing and edge labeling [14].

First, differentiation is the computation of the derivatives
to identify edges. We compute gradient vectors represented
by ��� using the central difference operator and the mag-
nitude of the gradient vector is � ��� � . The normalized
gradient vector is computed as following:

���� ���
� ��� � (1)

The frequently used second-order derivative operators
are the Laplacian operator and the directional second-order
derivative. In this paper, we compute and use the directional
second-order derivative along gradient direction. The oper-
ator is defined by:

�
	 �
� 	 �� � ���� � � ��� � (2)

Second, for the smoothing purpose, a bilateral filter that
smoothes data values while preserving edges [13], is ap-
plied to gradient and the directional second derivative.

Finally, edge labeling is to identify authentic edges while
suppressing false edges produced by the reasons of noise
and non-maximum high gradient. Since we assume that
volume data have reasonably high signal-to-noise ratio and
some noise that can be accumulated in the first and second
derivative computations is reduced by a bilateral filter, we
consider only removing the “phantom edges” (defined in
[3]) or non-maximum gradient. Ziou and Tabbone’s survey
[14] shows several ways to remove the phantom edges.

Phantom edges can be distinguished easily by climbing
a gradient mountain along gradient direction, while a voxel
role is decided. In the next section, we present the phantom
edge removing in detail.

4. Distance as a Voxel Role

Since the direct volume rendering does not need any ge-
ometric structure, it is enough to find proper transparencies
for all voxels. If we know the roles of each voxel in terms
of boundary, then we can assign correct transparencies to
the voxels easily based on the voxel roles. In other words,
if a voxel is exactly on a boundary, then the voxel should be
totally opaque, while a voxel that is a part of the boundary
with some thickness should have proper transparency.

In this section, we define voxel roles with distance from
an authentic edge. The distance is the Euclidean distance
along gradient direction in 3D space. The distance is com-
puted by shooting two rays to both positive and negative
gradient directions at every voxel location. The two val-
ues of gradient and the directional second derivative are in-
terpolated by tri-linear interpolation at every sampling lo-
cation. If gradient decrease at one of the directions, then
the other direction is taken and keep sampling until it hits a
zero-crossing location of the second derivative. Since gradi-
ent direction is perpendicular to the edge orientation [14],
if we follow one of the gradient directions, we will find a
zero-crossing locations or a boundary in 3D space.

Fig. 1 shows a 2D example on computing a distance
from a voxel to an authentic edge along the negative gra-
dient direction. Ideally, the two values of gradient and the
directional second derivative are changed like Fig. 2 along
both positive and negative gradient directions.

A sampling location is represented by
�
��������� ���

������������ ���������� , where !#"%$�& ��' � ' "%$(& � . If the two signs
are changed at the two consecutive sampling locations of �*)
and � 	 as following, �
+ + � � � ���,)-�,�/. �
+ + � � � �0� 	 �,� '21 , then we
compute the exact zero-crossing location with the bisection
method, [1]. Experimentally, we decide the sampling inter-
val and " $�& � such as 3 $�46587�9 and 3 $�4:5 .<; 9 respectively,
where 3 $�465 �>=@?A�B� width of a voxel, height of a voxel,
depth of a voxel � .

Fig. 3 shows the results of the distance and the direc-
tional second derivative computation as well as each dataset

Sampling Locations

Hit
Location

Voxel

False Boundary

Authentic Boundary

Gradient Vector

Figure 1. The voxel role or distance computation by sam-

pling from a voxel to an authentic edge along the gradient

direction of the voxel

f(x)

f’’(x)

Voxel

False
Edge

Authentic
Edge

False
Edge

Negative
Direction

Positive
Direction

f’(x)

Distance

Figure 2. The authentic and false edges and the relations

of
�

,
� +

, and
� + +

slice. The positive and negative second derivative values are
colored with blue and red respectively. Therefore, the zero-
crossing locations of the second derivative are between the
two colors. To denote the distance values through images,
we linearly flip the distance values. For example, if the dis-
tance values at " � � � ranges from 0 to " $(& � , then we simply
compute the following formula for each pixel value of Fig.
3 (right) and Fig. 4.

� � �
�B� " $�& � !<" � � �
"%$�& �

.�� 9 9 (3)

5. Multi-Dimensional Transfer Functions

In this section, we suggest the opacity functions based
on the distance from a voxel to an authentic edge. We also
suggest the 2D opacity functions of intensity and gradient
magnitude at hit locations. The two kinds of opacity func-
tions are multiplied to generate the final opacities of each
voxel.

(a) Visible Human Male CT

(b) Engine

Figure 3. Volume Data Slice(left), the Directional Second

Derivative(middle) and Distance(right): The red and blue

colors of the middle column represent the negative and

positive values of the directional second derivative re-

spectively.

Figure 4. Turbine Blade Distance Image: The right-hand

side image is the enlarged picture of the left image of the

yellow box.

5.1 Opacity Functions of Intensity

Once we decide each voxel role in terms of boundary, the
transparency of each voxel can be generated easily based
on the role or the distance that is computed in the previous
section. We suggest three different opacity functions, linear,
nonlinear concave, and nonlinear convex functions as Fig.
5. The linear opacity function is to map the flipped distance
and the concave and convex nonlinear functions use the � -th
power of the distance as following:

��� � " �/� =�� � ! � . ""
	 ���� 1 ��� (4)

���%� " �B� � &���� ��� " ! " 	 � � 5 if " ' " 	
1 others

� (5)

and � � � " � � =�� � ! � . " 5" 5	 � � � 1 ��� (6)

where 1 ' " 	 � " $�& � , 1 � � � ; , and ���>; . Eq.
4, 5 and 6 are linear (Fig. 5 (a)), nonlinear concave (Fig.
5 (b)), and nonlinear convex (Fig. 5 (c)) opacity functions
respectively. The location of the three opacity functions are
controlled with " 	 and � and � dominates the shape of the
nonlinear functions.

0

a

α

(a) Linear Map

cd 0

a

α

cd 0

a

α

cd

(b) Concave Nonlinear (c) Convex Nonlinear

D DD

Figure 5. Alpha Maps

Since the opacity function, � � � " � , is computed based on
only distance, we define another opacity function of inten-
sity like ���
��� � that is controlled by a user. The final opacity
value is computed by the multiplication of the two opacity
functions as following, ��� ��� � . ��� � " � . The opacity function
has both of user control and automatic opacity generation.
While a user turn on some range of the intensity values with� � ��� � by assigning a totally opaque value such as ; , � � � " �
automatically generate the opacities of each voxel with the
alpha map of Fig. 5. � � ��� � also provides the ramps of
traditional 1D transfer functions.

5.2 Gradient Magnitude for the Second Axis

Most multi-dimensional transfer functions have gradient
magnitude for the second axis, while intensity works as the
first axis. The 2D functions of intensity and gradient are
more powerful than 1D functions. However, as the function
domain is extended to 2D space, it is much harder to control
by hand, since we need to search the combined ranges of
intensity and gradient.

We assume that most boundaries of volume data have
some thickness and all voxels that are in a thick bound-
ary (or boundary voxels) should be visualized with proper
transparencies. Therefore, the gradient range of a feature
can vary from a relatively small value to a big value in a
thick boundary. Even though all voxels opacities of a vol-
ume dataset are decided by some pre-processing, it is not a
trivial work to collect boundary voxels through searching a
gradient range.

To reduce the searching time of the gradient ranges, we
replace each voxels gradient value with the interpolated
value at the hit location. When we compute the distance
as in Fig. 1, the gradient at the hit locations is interpo-
lated by tri-linear interpolation. If we use the interpolated

value at hit locations as the second axis, then it will make
the searching work easier, since we only have to consider
the gradient ranges at a boundary.

The 2D opacity function of intensity and gradient is rep-
resented as ��� �	� ��
 � , where
 represents gradient of each
voxel at the hit location. Each voxels opacity is finally
decided by � � �����
 � . � � � " � . The 2D opacity function,� � �����
 � , is controlled by a user like [8]’s function, but
the opacity values of each voxel can be 1 always, since the
opacity function of distance, � � � " � , generates alpha values.
A user only have to select some regions to be visualized in
the 2D space of intensity and gradient.

� vs. � + � vs. � + + � vs. � +

(a) Visible Human Male CT

(b) Engine

Figure 6. The Graphs of
�

vs.
� +

(1st Column),
�

vs.
�
+ +

(2nd Column), and
�

vs.
� +

(3rd Column): The
�

and� +
values of the 3rd column graphs are interpolated at

the hit locations of the zero-crossing second derivative.

Each slice of (a), (b), and (c) of Fig. 3 is used to generate

these graphs.

The 3rd column of Fig. 6 shows the graphs of intensity
and gradient at the hit locations that are described in Fig. 1.
The each slice of Fig. 3 is used for the graphs. We can eas-
ily recognize that each blob of the 3rd column graphs of Fig.
6 represents a boundary and the blobs are usually located in
the local maxima of gradient (the 1st column graphs of Fig.
6) or in the zero-crossing locations of the second derivative
(the 2nd column graphs of Fig. 6).

6 Implementation and Results

We have implemented a 3D texture-based volume ren-
derer using nVidia graphics cards such as GeForce3, 4, and
FX. Since the cards provide at least four 3D multi-textures
and dependent texture reads with register combiners, the
mult-dimensional transfer functions can be implemented on

a PC equipped with those graphics cards. Fig. 7 shows
the rendering pipeline in nVidia GeForce cards. In the ren-
dering pipeline, dependent texture is used for implementing
the opacity function, � � �����
 � that is controlled by a user
and assigning colors to each voxel with the color function
of � and
 .

Light Vector (L)

Normal Vector
Volume (N)

Tex2

Half Vector (H)

Dot Product
(N H).

.(H N)
Specular Power

. 8
Specular
(H N)

.
Diffuse
(L N)

Dot Product (L N).

Alpha1*Alpha2

RGB Color*Diffuse
+ Specular

RGB

Alpha

Tex0

Volume Data
(v, g)

RGB Color

Distance Volume

Tex3 Conversion through
Look Up Table

Alpha1

Alpha2

Register Combiners

Dependent Texture
Tex1

u (v, g)α C(v, g)

Figure 7. Rendering Pipeline in a nVidia GeForce Card:

Three texture volume datasets feed into the register com-

biners and a RGB color and an alpha value are computed

with the register combiners. The solid lines represent

data flow and processes and the dashed line indicate the

register combiners.

The volume rendering pipeline requires the six compo-
nents, RGB normal, intensity (�), gradient (
), and distance
("), for each voxel. If we want to visualize a � 9���� vol-
ume dataset, (=16 Mbytes), then we need at least � 9���� . � ,
texture memory. To reduce the texture memory require-
ment, our implementation relies on hardware assisting tex-
ture compression that is one of the ARB OpenGL exten-
sions. Especially, we use the s3tc texture compression for-
mat [12] that is provided by the nVidia graphics cards.

(a) (b) (c)

Figure 8. The Turbine Blade Graphs and an Alpha Map:

(a) is the general graph of
�

vs.
� +

, (b) is the graph of
�

vs.
� +

at Hit Locations and (c) is the alpha map, ���
�	� ��
 � ,
defined by a user

We generated images to test the distance-based multi-
dimensional transfer functions with alpha maps. First, all
voxels are turned on by assigning 1 to all voxels that are in

the white region of Fig. 8 (c) and we adjust the alpha map
parameters of � and � and fixed " 	 like Fig. 9. When we
want to visualize thick and opaque boundaries of a volume
dataset, then the convex alpha map of Fig. 9 (b) will be
useful, while the concave alpha maps of Fig. 9 (c) and (d)
are useful to make boundaries thinner. Since the gradient
of a voxel is replaced with the value at the hit location of
the zero-crossing second derivative, it is easy to decide a
gradient range.

One of the main reasons that make transfer function gen-
eration hard is a huge number of degrees of freedom. Even
though we consider only 1D transfer functions, each control
point has the two degrees of freedom in intensity and trans-
parency axes. However, in the proposed multi-dimensional
functions, the number of degrees of freedom is reduced very
much, since the alpha values of each voxel are decided by
the alpha function, � � � " � , automatically. Plus, since the
shape and location of � � � " � can be controlled by the three
parameters, � , " 	 , and � , a user can adjust the transparency
effect.

7. Conclusions and Future Work

In this paper, we presented a new multi-dimensional
transfer functions. The proposed functions can reduce the
number of degrees of freedom radically, since the alpha val-
ues of all voxels are decided automatically with the three pa-
rameters, � , " 	 , and � based on distance to the zero-crossing
location of the second derivative. Plus, the searching time
of the gradient magnitude range can decreases, since each
voxels gradient is replaced with the value of the hit location.

For the future work, we need to make some dependency
of the two different alpha functions of ���
�����
 � and ��� � " � .
It will provide differenct � �%� " � for some different � and
 .
Another improvement of this paper is to show how much
bilateral filters can improve Canny’s edge detector. Orig-
inally, Canny’s edge detector is combined with Gaussian
filters.

8. Acknowledgments

This research was supported in part by NSF grants INT-
9987409 EIA-0325550, a grant from the Whitaker founda-
tion, and from grant UCSD 1018140 as part of NSF-NPACI,
Interaction Environments Thrust.

References

[1] J. L. Buchanan and P. R. Turner. Numerical Methods
and Analysis. McGraw-Hill, Inc., 1992.

[2] J. Canny. Finding edges and lines in images. Technical
report, 1983.

[3] J. J. Clark. Authenticating edges produced by zero-
crossing algorithms. IEEE Transactions on Pat-
tern Analysis and Machine Intelligence, 11(1):43–57,
1989.

[4] S. F. F. Gibson. Constrained elastic surface nets: gen-
erating smooth surfaces from binary segmented data.
In Medical Image Computation and Computer As-
sisted Surgery, 1998.

[5] S. F. F. Gibson. Using distance maps for accurate sur-
face representation in sampled volume. In Volume Vi-
sualization Symposium. IEEE, 1998.

[6] G. Kindlmann. Multidimensional transfer functions
for interactive volume rendering: Design, interface,
interaction. SIGGRAPH Course Notes, 8(3), 2002.

[7] G. Kindlmann and J. W. Durkin. Semi-automatic gen-
eration of transfer functions dor direct volume render-
ing. In Proceedings of the 1998 IEEE Symposium on
Volume Visualization, October 1998.

[8] J. Kniss, G. Kindlmann, and C. Hansen. Interac-
tive volume rendering using multi-dimensional trans-
fer functions and direct manipulation widgets. In Pro-
ceedings of the Conference on Visualization, October
2001.

[9] J. Kniss, G. Kindlmann, and C. Hansen. Multidimen-
sional transfer functions for interactive volume render-
ing. IEEE Transactions on Visualization and Com-
puter Graphics, 8(3):270–285, 2002.

[10] J. Kniss, S. Premože, M. Ikits, A. Lefohn, C. Hansen,
and E. Praun. Gaussian transfer functions for multi-
field volume visualization. In IEEE Visualization
2003, October 2003.

[11] M. Levoy. Display of surfaces from volume data.
Computer Graphics and Applications, 8(5):29–37,
1988.

[12] NVIDIA. OpenGL Extension Specifica-
tions. NVIDIA Corporation, March 2004.
http://developer.nvidia.com/page/home.

[13] C. Tomasi and R. Manduchi. Bilateral filtering for
gray and color images. In Proceedings of the IEEE In-
ternational Conference on Computer Vision, January
1998.

[14] D. Ziou and S. Tabbone. Edge detection techniques -
an overview. Pattern Recognition and Image Analysis,
8(4):537–554, 1998.

α

d max

1

D

(a) Linear Alpha with � � 1�� ; and " 	 � " $�& �

α

d max

1

D

(b) Convex Alpha with � � ; � 1 , " 	 � "%$(& � , and ��� � � 1

α

d max

1

D

(c) Concave Alpha with � � ; � 1 , " 	 � " $(& � , and � � 9 � 1

α

d max

1

D

(d) Concave Alpha with � �@; � 1 , " 	 � " $�& � , and � ��� � 1
Figure 9. Turbine Blade Rendering with Several Alpha

Maps

