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Abstract

The size and detail of graphics environments in everyday
use has gone up considerably recently. Still, most applica-
tions use locally resident geometric content for rendering.
In this paper, we present a system to stream large graphics
environments from a central server to multiple number of
clients. The streaming is transparent to the user who can
treat remote models just like local ones. The streaming sys-
tem automatically adapts to the rendering capabilities, net-
work bandwidth and latency of the client and transmits an
optimized model. We present the design of the streaming
system and give results of streaming a large model using it.

1. Introduction

The last decade has seen a huge growth in the popular-
ity of 3D graphics applications. These include games,
walkthrough of large architectural spaces or large outdoor
scenes, visualization of large scientific data sets, etc. Graph-
ics acceleration capabilities of PCs improved drastically in
recent years. However, nearly all 3D applications are ren-
dered using content stored on the local system. The client-
server model of computing has not really been popular for
3D applications. The reason could be the slower improve-
ment in the speed and latency of computer networks com-
pared to that of the graphics technology. Hence, there are
no effective means for streaming bulky virtual environments
over the network.

Rendering streamed geometry remotely could be prefer-
able to local rendering in many situations. (1) Bulky mod-
els need not be completely downloaded in order for them to

viewed. Only the relevant portions can be streamed to the
client for remote rendering. (2) Having a central repository
for all the models and assets enables the content provider to
consolidate and manage all content at the same place. The
provider can then stream the content to the client based on
the capabilities and connection speed of the client. The ren-
dering technique and detail levels will depend on the type of
client. Remote rendering is helpful in cases when the con-
tent on the server needs to be protected. A recent work by
Koller et al. [8] describe a remote rendering system intended
for this. (3) A central control of the environment is also
useful in case of dynamic data that changes in response to
external inputs. The data can be kept consistent as it needs
to be updated only at a single server. The client automati-
cally receives the most current data available. This is very
useful in cases where data is received and needs to be trans-
mitted in real-time like in meteorological data such as cloud
and weather patterns. (4) Multiplayer games with dynamic
worlds and large extent will also benefit from streaming.

1.1. Related Work

Web-based visualization systems have received some at-
tention recently. VRML was developed for remote inter-
action. It has been used for streaming with compression
of models earlier by Djurcilov and Earnshaw [4, 5]. This
however works only for static models. Li uses Geometry
compression [10] and level of detail to reduce the size of
the data to be transmitted. Most remote rendering and ge-
ometry streaming efforts have focussed only on geometry
compression. Excellent work has been reported on both
lossy and lossless compression of geometric data that in-



clude progressive meshes by Hoppe [6] and Edgebreaker
by Rossignac et al. [7], etc. While compression is necessary
for streaming geometry, other system design issues need to
be addressed as well. Rusinkiewicz and Levoy [9] use a
multiresolution splat for streaming geometry. Splats use
only points as features and need no polygon connectivity
information. They are also faster to render than polygons,
but are riddled with resolution issues. A similar method
by Bischoff [2] uses ellipsoids to approximate the geome-
try of the model. These approaches require rigorous pre-
processing and is unsuitable for dynamic data. The remote
rendering system from Stanford mentioned above gives a
crude model to the client which can be used for navigation
[8]. The viewing parameters are sent to the server which
generates the actual view and sends the image to the client.
The Silicon Graphics VisServer follows a similar philoso-
phy and streams rendered images to clients.

These approaches do not address the overall system is-
sues of network speed and lag and the client capabilities
for rendering. Biermann et al. [1] describe a method of re-
mote rendering utilizing prediction and image based render-
ing. This method renders frames on the server and sends the
views in compressed format to the client which utilizes IBR.
The main problem with IBR algorithms for remote render-
ing is that they are not robust enough to handle rapid view
changes. Schneider and Martin describe a framework which
adapts to the client characteristics including network band-
width and the client’s graphics capabilities [13]. They limit
themselves to individual 3D models and not to entire virtual
environments. Teler [14] describes a remote rendering sys-
tem utilizing path prediction and bandwidth based level of
detail reduction. This system assumes a powerful client and
ignores its characteristics. It also does not use visibility to
remove unnecessary geometry from the scene.

We present an adaptive system for streaming of graphics
environments in this paper. Our focus is on the overall sys-
tem aspects of geometry streaming; geometry compression;
culling etc are important and can improve the performance
of our system also. A preliminary system with a fixed client
and static environments was described in an earlier paper
[3]. The architecture supports a server connected to mul-
tiple clients that are joined together in a common philoso-
phy of optimizing the navigation experience in the virtual
environment at the client. The data streaming approach ide-
ally is handled in a completely transparent manner for the
user. User programs do not distinguish between local mod-
els and streamed remote models; there can be a free inter-
mingling of remote and local objects. The system adapts to
the client’s rendering capabilities, network bandwidth and
latency, and the user motion and automatically scales down
content to match the capabilities of the situation so that the
user experience of navigating the virtual environment is as
fluid and jitter free as a local walkthrough.

Section 2 describes the objectives of a transparent ge-
ometry streaming system. Section 3 presents our system in
some detail. Summary of results indicating the performance
of the system is given in 4 and some concluding remarks in
the last section.

2. Transparent Geometry Streaming

The streaming system consists of multiple independent
modules that exchange data between them. The schematic
diagram of the system is presented in Fig 1 and 2 The main
components of the system are:

� User Program: The user program on the client-side ac-
tually renders the virtual walkthrough. Any graphics
program could be the user program; no assumptions
are made about it. It uses the client API to request
models from the remote server.

� Client Module: The client module receives geometric
data from the server and interfaces with the user pro-
gram. It also utilizes caching and user path prediction
to improve the user experience.

� Server Module: The server module generates the opti-
mum representation to be streamed based on the client
parameters. It interfaces with the client module and
keeps track of relevant aspects of the client and the
user. The server also keeps track of the dynamic ob-
jects and notifies the clients if they change.

� Server Input and Pre-Processor: The input program
uses the server API to register a model with the server.
The model is converted to the internal representation
by the pre-processing module and is then ready for
streaming.

2.1. User View

Under transparent streaming, the user needs to make no dis-
tinction between a local model and one that is streamed
from a server. The user interfaces with the client module
and loads remote models using the API like other models.
The user can render, reason about, and manipulate these
models like any other. The user can also change aspects
of the remote model such as replacing a texture with a local
one. Conceptually, a subtree of the user’s graphics scene
graph sits on the remote server. The user program is re-
sponsible for the interaction with the user and the naviga-
tion control in the virtual environment. The user program
passes the motion parameters to the client module on user
movement in the virtual environment.

2.2. Client View

The client library interfaces with the user program, per-
forms caching and prediction needed for better perfor-
mance, and interfaces with the server. The client API pro-
vides the interface hooks for the user program. It has access



Figure 1: Client Side Block Diagram

to certain aspects of the remote model after it is streamed
and loaded into the user’s scene graph. This is needed for
caching parts of the model. The client enables the user to
browse and select from available environments for stream-
ing.

The client also interfaces with the server module. The
server sends relevant sections of the spatially partitioned
model in response to a client request. The data could be
sent in compressed form or otherwise, depending on the
available network bandwidth. The model is cached at the
client even after it is not needed anticipating a retracing of
the user’s path. Subsets of the scene graph of the remote
environment model will be present at the client, based on
the path visited by the user. The client returns a handle to
the potentially visible subtree to the user which is used for
rendering. Client is also notified by the server when an ob-
ject has changed. The client then decides if the changed
model should be streamed in immediately or later. The
client module uses path prediction in addition to caching so
that models required in the future are available before they
are needed. This is a handle to fight the network latency of
the system so that freeze-free rendering is possible.

2.3. Server View

The server module has the total model of the environment
in the prescribed internal representation format. Server re-
ceives requests for streaming from clients. In response, it
generates and transmits a representation of the model suit-
able for the client. The server has the following functions.

(1) The server assesses the client capabilities, bandwidth,
and latency and selects a level of detail suitable for it. This
can change with time. For instance, when the bandwidth is
low, a low quality model is sent to the client initially. When
spare bandwidth is available, a higher detail model could be
sent if the client has the capacity to render it. The server
keeps track of the essential state of the client including the
list objects in its cache and the local assets used by the client
(if any) in addition to its rendering capability and the user
speed.

Figure 2: Server Side Block Diagram

(2) The server is notified when an object changes its posi-
tion or appearance by whoever is in charge of it. The server
pro-actively notifies every client who holds the object in its
cache about its change. The changed model is sent to the
clients only on demand.
(3) The server has an API for registering environment mod-
els. These are converted to the internal representation be-
fore being made available for streaming. This conversion
may involve computing LODs, texture manipulation etc.,
and could be a time consuming process. This offline task is
performed by the pre-processing module of the system.
(4) The server itself could have a distributed architecture.
The server module could manage the client interface and
could coordinate the activities of other processors that actu-
ally perform the selection and transmission of the model to
the client.

2.4. The Internal Representation

The internal representation is the in-core format of the com-
plete environment to which all registered environments are
converted. Multiple external representations may be sup-
ported by the system. The characteristics of our internal
representation are described below.

Only potentially visible portions of the environment is
streamed to the client, selected on the fly by the server.
Thus, the internal representation should facilitate visibility
determination using rendering on a per object basis. Parts
of this representation will be transmitted to the client and
will be used for rendering there. Thus, the internal repre-
sentation should be hierarchically organized and spatially
partitioned for maximum utility.

A tree with leaf nodes containing geometry and the inter-
nal nodes containing additional information such as trans-
formations is well suited for this. The scene graph structure
of tools like Performer and Open Inventor are organized this
way. We use the Performer scene graph as it is a general
data structure that provides all graphics features. As men-
tioned earlier, a subset of this scene graph will be present
at the client, depending on the portion of the environment



seen by its user. Spatial ordering of objects will help in this;
when an object is sent to the client, the entire branch from
the root to the leaf node is transmitted. Multiple levels of
detail of each object may be present at the leaf node. Only
the relevant levels of detail will be sent to the client.

3. The Streaming System

The primary objective of the streaming system is to opti-
mize the walkthrough experience of the user given the client
parameters. The following are the requirements of an ideal
remote rendering system.

� Highest Quality Rendering at Interactive Frame Rates:
The data streamed to the client must match with the
client’s graphics capabilities and network bandwidth.
A lower detail model only should be sent if the client
has low capabilities. The model quality could be low-
ered further if the size of the model will cause the
frame to freeze at the available bandwidth.

� Freeze-Free Rendering: The client must request suf-
ficient data to cover the current view as well as its
immediate neighbourhood to avoid pauses in render-
ing. This assumes that the user moves continuously
in space. The models of individual objects received
should also be cached. This avoids the need to get them
again if the user retraces the path, which is quite likely.

� Latency Immunity: Poor latency can result in delays
and freezes, reducing the interactive viewer experi-
ence. Predicting the user motion can alleviate this
problem. The client module predicts the user’s future
locations assuming a parametric motion model based
on the past positions. Geometry data for possible fu-
ture locations is fetched from the server in advance.
A good rule is to request data that may be needed in
the next

�
seconds, where

�
depends on the network

latency.

The server must serve multiple clients simultaneously
without delay. Each client request should be translated into
a model optimized for its parameters. The server should
be able to support different types of clients simultaneously.
The parameters of the client that affects the model sent to
it are the following. (a) Client capability: The geometry
transmitted must match with client’s hardware. Better qual-
ity models need to be transmitted in case the client has good
graphics acceleration. It is fruitless to send a high quality
model to low-end client machine. (b) Network bandwidth:
The quality of the models to be transmitted is directly pro-
portional to the available network bandwidth as higher qual-
ity models contain more bytes. A low quality model at the
client could be replaced by a higher quality one when the
request for new models is modest. (c) Connection latency:
The higher the latency, the slower the response of the sys-
tem to user motion. (d) User speed: The model detail can

be optimized based on the user’s navigation speed. Lot of
data is required when moving fast as more new geometry
will be visible. However, low quality models will suffice
when the user is moving fast. When the user slows down,
better quality models can be sent to the client.

3.1. Salient Features of the System

The important features of the system are summarized in
this section. Many of the details relating to prediction and
caching algorithms used are similar to those used in [3]. The
five most important aspects of the current system are given
below.
Visibility Based Representation: Only the potentially visi-
ble portion of the scene is sent to the client by the server.
Thus, invisible parts of the environment are removed ini-
tially. We use Object-based Visible Space Models as the
basic representation [12]. In this scheme, an object is trans-
mitted to the client if any portion of it is visible. Visibility is
checked by rendering and reading back. Each object could
have multiple levels of detail. The right level of detail is
transmitted based on the client capabilities and navigation
speed of the viewer.
Handling Local Motion: Visibility is not limited to a single
point in space. Visibility from a small region surrounding
the user’s actual camera location is used so that small local
motion can be supported without needing new data. A sin-
gle transmitted block of data handles local motion around a
particular VSM viewpoint.
Compression of Transmitted Data/Textures: The represen-
tation we use supports a number of geometry compression
schemes. Thus, the model could be represented as progres-
sive mesh [6] or as an advancing fan front [11]. In addition,
the data to be transmitted is compressed using a library like
zlib if bandwidth demands it. Textures are compressed
using JPEG and reduced in size based on available band-
width.
Client Side Prediction of Motion: Prediction of viewer mo-
tion is used to fight the network latency. Our system cur-
rently supports looking around, linear motion, and quadratic
motion. The user’s future path is predicted based on the past
and geometry is requested from the server. In our system,
prediction is transparent to the server; the client can use any
algorithm it wishes for prediction. Currently, the prediction
window used is 2 seconds by default. This can go up or
down based on the actual latency.
Client Caching and Dynamic Scenes: Object models are
cached on the client side to avoid retransmission. The server
keeps track of objects present in the client cache for consis-
tency. An object needed by the client is not sent to it by
the server if it is present in the cache. If an object changes
position or appearance, the server informs the client of the
same. The client first sets a dirty bit in its cache for the
object. The client then is free to either request the object



immediately or adopt a lazy strategy, requesting for it only
when the object comes into view. An LRU algorithm is used
if objects are to be removed from the cache. Whenever an
object is removed, the server is notified of the change.

4. Results

We implemented a prototype geometry streaming system.
This includes the client and server modules and the user
API. The preprocessing module is currently decoupled from
the system and run separately. The system performance fig-
ures and the rendering quality figures is not affected by this,
however.

We present several results from our system in this sec-
tion. The high-end client machine consisted of a 2.0 GHz
AMD Athlon 64 CPU coupled with 1GB of RAM and ATI
Radeon 9800 Pro graphics. The server used was a simi-
lar machine without the graphics accelerator. The medium-
end client machine was a Celeron CPU with 256MB RAM
and basic video acceleration. The very low-end clients
include a PocketPC connected using a wireless LAN and
a Nokia 3650 cellphone connected using Bluetooth to a
PC. The client and server machines were connected on an
100BaseT LAN. The lower bandwidth conditions were sim-
ulated over this network by limiting network traffic. The
model used was that of Fatehpur Sikri, created by hand
by NCST (http://rohini.ncst.ernet.in/fatehpur/). This model is
made up of about 524,000 triangles. The uncompressed
size of this model is around 140 MB and the assets add upto
15 MB. Another smaller castle model was used for certain
tests, containing about 200,000 triangles.

Time Data Received FPS
(High/Med) (High/Med)

0 2144/953 KB 85/37
5 1274/591 KB 77/28

10 1359/704 KB 69/35
15 954/487 KB 55/22
20 0/0 KB 94/34
25 688/321 KB 90/32
30 1033/597 KB 81/26
35 1563/899 KB 84/31

Table 1: Model size, data received and frame rates for high-
end and medium level clients

The frame-rate and the amount of data transferred during
a walkthrough which lasts for approximately thirty seconds
is shown in Table 1. The data transmitted during the walk-
through is only a very small fraction of the total size of the
model. The user was stationary at around 20 seconds and no
new data was streamed. For clients with lower capabilities,
a lower level of detail must be streamed.

4.1. Measure of Quality
We devised an empirical measure to assess the quality of
the client’s remote walkthrough experience, compared to a
local walkthrough. The quality factor is a function of the
model/texture detail and the average frame-rates achieved.
There are two aspects to the overall experience: the render-
ing quality and the network utilization.

The asset quality ��� of the
�

th visible object is the ratio
of its model quality at the given detail compared to the detail
that the client hardware can support. At any instant of time

�
, let ����� be the quality of the

�
th object. Let fpsr � and fpsl �

be the frame rates achieved at time
�

using remote and local
rendering of the same model respectively. We cap the frame
rate at 60 fps so that lower LODs do not skew the results
due to excessively high frame-rates. Let � � be the number
of objects visible at time

�
. Assuming the walkthrough lasts

between time instants
���

and
�
	

, the rendering quality factor�
qual is defined as

�
qual �

 ������������ fpsr �
fpsl � �

�� ���� 	 ��������� ���������� � �
This measures the match of the streamed model with the
client capability for rendering, subject to the client capabil-
ities and has a maximum value of 1.0.

The factor � net measures the utilization of the network
when there was demand for it. Ideally, the available band-
width should be utilized. This depends on the available
� bwa � and the utilized bandwidth bwu � at time

�
. We de-

fine �
net as

�
net �

 ���������������� req � � bwu �
bwa � ���������� ����� req � �  

where req � instantaneous requirement, which is either 0 or
1. � net � � can be achieved when the entire network band-
width is used whenever there is a request.

The achieved quality factors for different types of con-
nections are given in Table 2. Three different types of
clients are used, corresponding to high-end, medium-end
and low-end. We also utilize two different bandwidth levels
(100KB/s and 20KB/s). These figures are averaged over the
35 second walkthrough of the virtual environment.

Processor ! qual ! net
Spec (High/Low BW) (High/Low BW)

High 0.99 / 0.47 0.57 / 1.00
Med 0.97 / 0.69 0.48 / 0.96
Low 0.91 / 0.78 0.38 / 0.83

Table 2: Quality factor for different client parameters

We can infer the following from Tables 1 and 2. (1) The
quality factor is the highest for the high-end client with high
bandwidth as it always receives full quality models during



the course of the walkthrough. For clients with low capa-
bilities, the quality factor reduces due to a reduced frame-
rate. This happens because additional time is spent for
prediction, caching, etc. (2) When the bandwidth is low,
the quality factor reduces as models with lower LOD are
streamed most of the time. The quality factor is affected
to a lesser extent on the lower end client since the LOD
of models streamed is much lower than the high-end client
due to lower client capabilities. (3) The network utiliza-
tion is always good for lower bandwidth connections, as it
is easy to utilize the bandwidth completely. The requests
may not generate sufficient data if high network bandwidth
is available.

Figure 3: Walkthroughs at varying levels of quality. Top:
Low (100K tris) and medium (250K). Bottom: High (390K)
and Full Quality (524K). Note the difference in quality of
model and texture.

4.2. Tests on Very Low-End Clients
We tested the system on a Dell Axim PDA running
PocketPC OS. The memory constraints and low CPU
speed make rendering geometry on it very slow. Each
frame takes 5 to 8 seconds to render. The technique of
streaming was modified slightly with rendering done on the
server. Compressed JPEG images of appropriate size are
transmitted over the wireless network and the PocketPC
displayed it. Similar techniques work on a cellphone with
Bluetooth connectivity. Frame rates in the range of 5fps
can be got by this.

5. Conclusions and Future Work

We presented a system to stream geometry transparently
from a server to the client. The users on the client machine
loads remote geometry into their scene graphs normally.
The quality of the streamed models adapts to the client
characteristics for the best possible walkthrough experi-
ence. The system works reasonably on a wide variety of
clients from high-end PCs to low-end PDAs. The current
efforts are to implement a complete Performer based

Figure 4: Screenshot of the user interface

streaming system. The user will be able to integrate any
remote model with their own scene graph.
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