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Abstract and Pentland [11] were the first to seriously consiclan-

tinuous sign recognition. Using Hidden Markov Model

We present a functional data analysis (FDA) based (HMM) based representations, they achieved near perfe
method to statistically model continuous signs of the Ameri- recognition with sentences of fixed structure, i.e. contail
can Sign Language (ASL) for use in the recognition of signsing personal pronoun, verb, noun, adjective, personal pr
in continuous sentences. We build models in the Space ofioun in that order. Vogler and Metaxas [15, 16, 17] hav
Probability Functions (SoPF) that captures the evolution of been instrumental in significantly pushing the state-of-thi
the relationships among the low-level features (e.g. edgeartin automated ASL recognition using HMMSs. In terms o
pixels) in each frame. The distribution (histogram) of the the basic HMM formalism, they have explored many vari
horizontal and vertical displacements between all pairs of ations, such as context dependent HMMs, HMMs couple
edge pixels in an image frame forms the relational distri- with partially segmented sign streams, and parallel HMM
butions. We represent these sequence of relational distribu-The wide use of HMM is also seen in other sign languac
tions, corresponding to the sequence of image frames in arecognizers.
sign, as a sequence of points in a multi-dimensional space, Most of the works in continuous sign language recoc
capturing the salient variations in these relational distri- nition have avoided the basic problem of segmentation a
butions over time; we call this space the SoPF. Each signtracking of hands by using wearable devices, such as ¢
model consists of a mean sign function and covariance func-ored gloves, or magnetic markers, to directly get the loc
tions, capturing the variability of each sign in the training tion features. For example Vogler and Metaxas [15, 16, 1
set. We use functional data analysis to arrive at this model. have used 3D magnetic tracking system; Starner and Pe
Recognition and sign localization is performed by correlat- land [11] have used colored gloves while Maal. [5, 18]
ing this statistical model with any given sentence. We alsohave used Cybergloves. In this paper, we restrict ourselv
present a method to infer and learn sign models, in an un-to plain color images, without the use of any augmentin
supervised manner, from sentence samples containing thevearable devices.
sign; there is no need for manual intervention. There are two kinds of information that can be used ft
recognition, viz. manual and non-manual. The manual i
formation relates to the hand motion or shape, while tt
non-manual information relates to the facial expression

While speech recognition has made rapid advances, sigrf’€@d movement, or torso movement. Here we use the m;
language recognition is lagging behind. With gradual shift ual information from hand motion. The hand motion is firs

to speech based I/O devices, there is great danger that pe,modeled using relational distributions, which are efficientl
sons who rely solely on sign languages for communication represented as points in the Space of Probability functio

will be deprived access to state-of-the-art technology un- (SOPF). The points are then transformed into smooth cury
less there are significant advances in automated recognitiorih@t are registered and trained to form a unique model fo
of sign languages. sign using Functional Data Analysis.
Prevpus works insign language have been most.ly in the2_ Data Set

recognition of static gestures, e.g. [2, 21, 13] and isolated

signs, e.g. [19]. Yeasin and Chaudhuri [20] had worked on A vital component in ASL recognition research is the
dynamic hand gestures. Bobick and Wilson [1] had pro- data set used in the study. The largest corpus used in A
posed a state-based approach to model gestures. Starneecognition contains a vocabulary of around 50 signs, er

1. Introduction



bedded in approximately 500 sentences [15, 16, 17]. Onlypects.
recently has there been a concerted effort in systematically We refer the reader to [14] for the details of the rep
constructing a common ASL corpus for public dissemina- resentation. Here we just sketch the essentials. L
tion. At Boston University, Neidlet al. [6] have created F = {f;, ..., fy } represent the set of N primitives in an im-
such a dataset using SignStream, which is a system for lin-age. For us these are Canny edge pixels of the image. |
guistic annotation, storage, and retrieval of ASL and other Fj, represent a random k-tuple of primitives, and the rel:
forms of gestural communication. This dataset also had notionship among k-tuple primitives be denoted By. Let
wearable aids, but the video was sampled too coarsely. Orthe relationshipsk; be characterized by a set of M at-
an average there were only 5.8 frames per sign. So, we hadributes A, = {Ax1, ..., Axar}. For ASL, we use the dis-
to do our own data collection. tance of the two edge pixels in the vertical and horizont
Setting the realistic long term goal of automated ASL direction(dx, dy) as the attributes. We normalize and rep
recognition, but in a constrained domain, we selected theresent the distance between the pixels in an image size of
sentences that would be used while communicating with x 32 to reduce the size for further processing. The shape
deaf people at airports. Data was collected and groundthe pattern can be represented by joint probability function
truthed by an ASL interpreter. A color video camera was P(Ag = ayg), also denoted by (a1, ..., arn) Or Plag),
used. The background was kept plain. The dataset has 39hereay; is the (discretized in practice) value taken by th
distinct signs forming 25 sentences. There are 10 to 12 in-relational attributed;. We term these probabilities as the
stances of each of the sentences. The details of this data iRelational distributions
available in [7]. One interpretation of these distributions is:

3. Relational Distributions and Space of Prob- Given an image, if you randomly pick k-tuples
ability Functions of primitives, what is the probability that it will

exhibit the relational attributeay,? What is
In most of the previous works icontinuousASL, detec- P(Ag = ay)?

tion and tracking ofhand have been simplified using colored Given that these relational distributions exhibit complicate

Stshapes that do not readily afford modeling using a combin
Only recently there has been effort to extract information ‘on of simple shaped dlstrlbu.uon, we adopt non-parametr
histogram based representation. However, to reduce the ¢

and to track directly from color images, without the use of hat i iated with a hi based X
special devices [19], but it has only been usediotated that s assoclated with a .'.Steram. ased representation,
X use the Space of Probability Functions (SoPF).

sign recognition. As we shall see, our representation does As the hands of the signer move, the relational distrib

not require tracking of hands. We would like these represen-,. . ) ) _
. tion changes. Motion of hands introduces non-stationari
tations to be somewhat robust to low-level errors. We use.

the Cannv edae pixels of each video frame as the Iow-levelm the relational distributions. Figure 1 shows example
primitivesy gep the 2-ary relational distributions for the sign ‘CAN’. In the

. o relational distribution’s plot, the vertical axis represents tt
Grounded on the observation that theganizationor . o .
: X o joint probability and the two horizontal axes represent th
structure or relationshipsamong low-level primitives are

more important than the primitives themselves, we focus attributes. Notice the change in the distr!butiong as t[
on the statistical distribution of the relational attr,ibutes ob- hand_s come down. The change n one gttnbute dimensi
served in the image, which we refer to msational dis- (vertical distance between edge pixels) in t'he plots can |

o " : seen clearly as the hands come down, while there is co
tributions Such statistical representation also removes the . . : . i
need for primitive level correspondence or tracking across paratively less change in the othe_r attnbl_Jte _dlm_en5|on_.

. Let P(ak, t) represent the relational distribution at time

frames. Such representations have been successfully usetd Let
for modeling periodic motion in the context of identifica-
tion of a person from gait [14] and non-periodic motion -
in the Cor?text of sign 9:eco[gni]tion [7]. I—?ere, we use it VP (ak,t) = Zci(t)(l)i(ak) +plaw) +lak) (1)
to build statistical models for non-periodic motion in ASL =1
signs. Primitive level statistical distributions, such as ori- describe thesquare rootof each relational distribution as
entation histograms, have been used for gesture recognia linear combination of orthogonal basis functions, whel
tion [3]. However, the only uses of relational histograms ®;(ay)’s are orthonormal functions, the functigifay ) is a
that we are aware of are by Huet and Hancock [4], who mean function defined over the attribute space,gagl)is
used it to model line distributions in the context of image a function capturing small random noise variations wit
database indexing. The novelty of relational distributions zero mean and small variance. We refer to this space
lies in that it offers a strategy for incorporating dynamic as- the Space of Probability Functions (SoPF).



Figure 1. Variations in relational distributions with mo-
tion. The left column shows the image frames in the sign
‘CAN’. The middle column shows the edge pixels, and
the right column shows the relational distributions

We use the square root function so that we arrive at a
space where the distances are not arbitrary ones but are re-
lated to the Bhattacharya distance between the relational
distributions, which is an appropriate distance measure for
probability distributions. Its proof can be found in [14].
leen a set of relational distributiongP(ax,t;) | ¢ =

., T}, the SoPF can be arrived at by principal compo-
nent analysis (PCA). In practice, we can consider the sub-
space spanned by a few (< n) dominant vectors associ-
ated with the large eigenvalues. Here, most of the variation
is captured by the eigen vectors associated with the top 20
(largest) eigen values. Thus, a relational distribution can
be represented using these N coordinatg3 Xs), which is
more compact representation than a normalized histogram

based representation. The ASL sentences form sequencesy

of points in this Space of Probability Functions.

4. Supervised Learning using Functional Data
Analysis

In the first learning scenario, we use sign samples that
are manually segmented from sentences. Each sign sample
consists of a sequence of SoPF coordinates. Each coordi-
nate sequence can be looked upon as samples of a smooth
curve, or function, in the SoPF space. We arrive at the
underlying smooth functional representation for each sign
sample using B-spline interpolation [9, 10]. This converts

each training sequence into functional data, which are th
smoothed and registered to arrive at a single statistical fur
tional model [9, 10]. The specific steps involved are as fo
lows:

1. Each training sequence of SoPF coordinates a

time-normalized by linearly interpolated resampling
mapped to a fixed time period, which is chosen to k
the mean length of all the sequences. For further m
nipulation, the normalized data is again resampled a
20 times finer resolution than the original data.

. All the time-normalized, discretely sampled, se

guences are then together turned infarectional data
object which represents the underlying sequences
continuous functions in terms of basis functions (B
splines, in our experiments) and the coefficients re
quired to reconstruct the observed data. The function
data of thei** sequence at time t is represented by

N
t)=> aind(t) (2)
h=1

wheregy, @2, ¢3, ..., ¢ are the N basis functions. The
coefficients o, determining the above expansion art
obtained by minimizing the sum of squares of the dif
ference of the discrete datg,;, where j=1, 2,..., n rep-
resent the n sampling(observation) points, to the corr
sponding values af;, i.e.

n

=D [y

j=1

SSE(d;, ) Z ik Pk (t 3

is minimized for thei** sequence of the data. The
number of basis function in the B-Spline represent:
tion, N, can be determined hyy = Ni + Np + 4,
where theNg represents the required resolution, .
the minimum number of features or events needed
be present in the observatioV, is the highest order
of derivative that needs to be retained in the observ
tion. In our experiments, we have used cubic B-Spline
and considere&x to be 10 andVp to be 6.

. The functional datay;, represented above is further

smoothed by minimizing the following penalty crite-
rion:

PSSE = /

wherez; is the smoothed form of the data and the las
term on the right side of the equation is feenaliz-
ing the roughnessf z;. PR(z;) can be defined as the
integral of square of the second derivativezgfi.e.,

)2dt + \PR(z)  (4)

PR(z) = / EAGIN (5)
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Figure 2. Supervised learning of word models. (a) shows the plots of just the first dimension of SOPF representation w.r.t
time, of five instances of the sign ‘CAN’. (b) shows the interpolated data. (c) shows the smoothed data, (d) shows the mean

of the smoothed data. And (e) shows the registered curves.

The amount of smoothing can be controlled by varying 5. Unsupervised Learning of Sign Models

the value of the smoothing parameter

computed.

Is it possible to learn a sign model without supervisiol

. The mean,u(t), of the smoothed sequences is then OF requiring manual segmentation of words in the trainin
dataset? In this section, we outline an approach, again ba

on functional data analysis, for this task. The data consis
5. Each of the smoothed curves is registered to the mearPf many ASL sentences, each consisting of different sig

curve, u(t), by estimating a warping functiork, (¢),
for each of them so that the registered curve§,) =
zi[hi(t)], minimize a global criterion:

of similar temporal duration, but with the constraint that al
contain one common sign. We can automatically genere
the model for this common sign. For this, instead of cor

ducting functional data analysis at the word level, we col

M
REGSSE = /T () — p(t)]2dt (6)

where M is the number of curves and T is interval over
which the curves are registered. The process of regis-
tration is then done iteratively till a convergence crite-
rion is reached. We use the convergence criterion of
0.01 and an iteration limit of 5 iterations.

6. The covariance is computed at each of the points in
the time axis. Mean and covariance functions together
form a model of each sign. Both the mean and covari-
ance are computed in the same way as for any other
statistical observations, from all the replications of ob-
servation at each time instant in the functional data ob-
ject.

For more detailed discussion on the above processes, we
refer the reader to [9, 10]. The code at [8] was used for our
experiments.

Figure 2 illustrates the above modeling process using just
the first dimension in the SoPF representation of each sign.
We conduct the actual analysis in a 20 dimensional SoPF
space, however, the figure is sufficient to illustrate how the

traces are simultaneously registered and mean representa-

tion is extracted. In addition to the mean, we also store the.
covariances among the 20 dimensions at each time instance;
i.e. we also store a multidimensioradvariance function

m

sider thewhole sentence. The outline of the steps are ¢
follows:

1. We build the mean and covariance function represent
tions from the functional data object for the set of train
ing sentences, using the steps outlined in Section 4.
course, the registration will be of poor quality since
the sentences contain different signs. However, tl
registration should be good over the part of sentenc
containing the common word.

2. The trace of the covariance matrix for each time instal

forms a measure of the variability of the registratiol
among the sentences.

3. The portion of the mean and covariance functions ov

which the variability is low form the model of the com-
mon sign. We can additionally use prior knowledge, i
available, about the possible location of the comma
word to prune out residual ambiguities.

The process isillustrated in Figure 3, again using just one
the 20 dimensions of the SoPF representation. The comn
sign in the 23 sentences training set corresponds to the s
‘IDPAPERS’. We have 12 instances of the sentence ‘IDP/
ERSWHERE' and 11 instances of the sentence ‘IDPA
ERSTABLE’. We see the variance in the registered curve
s low towards the first half of the sentence, when the con

on sign occurs. The variance is also low towards the e
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Figure 3. Unsupervised learning of sign models. (a) shows the plot of the first dimension of the SoPF representation for
sentences with one common word ‘IDPAPERS’, smoothed with smoothing parameter( A)=0.1. (b) shows the registered curves
for the same set of sentences. (c) shows the variation of the standard deviation of the registered sentences. (d) shows the
relevant time period indicating the common sign. (e) shows first SoPF dimension of the mean representation of the model
formed for the sign ‘IDPAPERS'. (f) and (g) respectively show the plots of the first vs. second SoPF dimension, and the first

vs. second vs. third SoPF dimension of the mean of the learnt model for the same sign.

because of end-of-sentence coarticulation, i.e. all the senthe sign’s length. Note that one of the property of the SoF
tences end in a common stance. This is easy to filter outis that Euclidean distances in this space correspond to Bh
based on prior knowledge of the common stance, or by sim-tacharya distance between the corresponding relational

ply ignoring the last few frames. tributions [14]. The sign is said to be located at the point

. minimum correlational distance. The value of the minimur

6. Recognition correlation is a measure of distance of the sign model to t
The models created above for each of the signs are usedentence.

for recognizing the ;igns inontinupusASL sentence_s: At 7 Actual Recognition Experiments

present, we use a simple correlation based recognition pro-

cess. Any given test sequence is turned into a functional The data set used for the experiments consists of 16 sic
data object, in much the same way as in the model forma-forming 10 sentences, with two to three signs per senten
tion process. The relational distribution of each frame of the The average length of the test sentences was 90 fram
test sequence is represented as a point in the 20 dimensiondirst, we present supervised learning (Section 4) resul
SoPF. The test sentence traces a curve in the SoPF spac&ach learnt mean functional data model is correlated wi
That curve is interpolated in the same way as in the casethe functional data object constructed from the test se
of the training data, and then converted to functional data,tence. The model signs are sorted based on the minimi
using the same B-spline basis functions. Then the test datacorrelational distance; the sign with smaller minimum cot
is smoothed to remove irrelevant features. The smoothingrelational distance is more likely to be present in the se
parameter is kept same as in the training set, i.e. 0.1. tence. To compute recognition rates, we consider if tf

Now each sign model is matched to the test sentence bycorrect sign occurs within the top matches in a:-sign

correlation. The distance is calculated by summing up thesentence. In this way, the recognition rate found was to |
distance of each point of the mean curve of the sign from 57%. If we consider the top + 1 matches, the recognition
the test sentence curve, and then normalizing the sum byrate increases to 69%. We note that these rates are for a v



simple recognition strategy; we expect the rates to be higher [5] J. Ma, W. Gao, C. Wang, and J. Wu. A continuous Chines

for better recognition strategies. As the focus of this paper
is in modeling, we did not yet explore more complicated
strategies.

The correlation based recognition is good at localizing

(6]

signs in a sentence. For most of the signs in the sentences,

the location is found near to the actual position. Signs were
located with about 92% accuracy. We define the error rate
as the difference of the actual starting frame number of the
sign to computed starting frame number, normalized by the
total number of frames in the sentence.

For unsupervised modeling, we considered four signs,
viz. ‘WHERE’, ‘SUITCASE’, ‘FINISH’ and ‘IDPAPERS’.

[7

(8]

The built models were tested on sentences not used in train-

ing. Four out of six possible occurances of the above words
in the test data were located with 82% or higher localization
accuracy.

8. Conclusions and Future Work

This papers presents a functional approach for super-
vised and unsupervised modeling of the signs of American

(9]

sign language recognition system. limernational Con-
ference on Automatic Face and Gesture Recogniti@ges
428 —433. 2000.

C. Neidle, S. Sclaroff, and V. Athisos. A tool for linguis-
tic and computer vision research on visual-gestural langua
data. Behavior Research Methods, Instruments, and Con
puters 33(3):311 — 320, November 2001.

1 A. S. Parashar. Representation and interpretation of ma

ual and non-manual information for automated America
Sign Language recognition, Master’s thesis, Department
Computer Science Engineering, University of South Floridz
2003.

J. Ramsay. Matlab,R and S-PLUS
Functions for Functional Data Analysis.
ftp://ego.psych.mcgill.ca/pub/ramsay/FDAfuns/ .

J. Ramsay and B. SilvermanFunctional Data Analysis
Springer, 1997.

[10] J. Ramsay and B. SilvermafApplied Functional Data Anal-

ysis Springer, 2002.

[11] T. Starner and A. Pentland. Real-time American Sign Lar

12]

Sign Language as smooth curves with variance at each point

in the curve, in a multidimensional space. The approach

uses plain video data that does not use any wearable aidg$13]

like data gloves, magnetic trackers etc., as its input. Instead
it relies on inter-feature relational distribution in any image
frame. We are presently working on automating the thresh-
olds used in the above process of self-learning of signs, and
using sentences with common signs at different locations.
The use of dynamic time warping while matching the sign
and the use of covariance while finding the distance from
the sentence, can significantly improve the recognition rate.

(14]

(18]

Also the above approach has to be tried on a dataset having

more humber of signs and sentences.
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