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Abstract

We present a functional data analysis (FDA) based
method to statistically model continuous signs of the Ameri-
can Sign Language (ASL) for use in the recognition of signs
in continuous sentences. We build models in the Space of
Probability Functions (SoPF) that captures the evolution of
the relationships among the low-level features (e.g. edge
pixels) in each frame. The distribution (histogram) of the
horizontal and vertical displacements between all pairs of
edge pixels in an image frame forms the relational distri-
butions. We represent these sequence of relational distribu-
tions, corresponding to the sequence of image frames in a
sign, as a sequence of points in a multi-dimensional space,
capturing the salient variations in these relational distri-
butions over time; we call this space the SoPF. Each sign
model consists of a mean sign function and covariance func-
tions, capturing the variability of each sign in the training
set. We use functional data analysis to arrive at this model.
Recognition and sign localization is performed by correlat-
ing this statistical model with any given sentence. We also
present a method to infer and learn sign models, in an un-
supervised manner, from sentence samples containing the
sign; there is no need for manual intervention.

1. Introduction

While speech recognition has made rapid advances, sign
language recognition is lagging behind. With gradual shift
to speech based I/O devices, there is great danger that per-
sons who rely solely on sign languages for communication
will be deprived access to state-of-the-art technology un-
less there are significant advances in automated recognition
of sign languages.

Previous works in sign language have been mostly in the
recognition of static gestures, e.g. [2, 21, 13] and isolated
signs, e.g. [19]. Yeasin and Chaudhuri [20] had worked on
dynamic hand gestures. Bobick and Wilson [1] had pro-
posed a state-based approach to model gestures. Starner

and Pentland [11] were the first to seriously considercon-
tinuous sign recognition. Using Hidden Markov Model
(HMM) based representations, they achieved near perfect
recognition with sentences of fixed structure, i.e. contain-
ing personal pronoun, verb, noun, adjective, personal pro-
noun in that order. Vogler and Metaxas [15, 16, 17] have
been instrumental in significantly pushing the state-of-the-
art in automated ASL recognition using HMMs. In terms of
the basic HMM formalism, they have explored many vari-
ations, such as context dependent HMMs, HMMs coupled
with partially segmented sign streams, and parallel HMMs.
The wide use of HMM is also seen in other sign language
recognizers.

Most of the works in continuous sign language recog-
nition have avoided the basic problem of segmentation and
tracking of hands by using wearable devices, such as col-
ored gloves, or magnetic markers, to directly get the loca-
tion features. For example Vogler and Metaxas [15, 16, 17]
have used 3D magnetic tracking system; Starner and Pent-
land [11] have used colored gloves while Maet.al. [5, 18]
have used Cybergloves. In this paper, we restrict ourselves
to plain color images, without the use of any augmenting
wearable devices.

There are two kinds of information that can be used for
recognition, viz. manual and non-manual. The manual in-
formation relates to the hand motion or shape, while the
non-manual information relates to the facial expressions,
head movement, or torso movement. Here we use the man-
ual information from hand motion. The hand motion is first
modeled using relational distributions, which are efficiently
represented as points in the Space of Probability functions
(SoPF). The points are then transformed into smooth curves
that are registered and trained to form a unique model for a
sign using Functional Data Analysis.

2. Data Set

A vital component in ASL recognition research is the
data set used in the study. The largest corpus used in ASL
recognition contains a vocabulary of around 50 signs, em-



bedded in approximately 500 sentences [15, 16, 17]. Only
recently has there been a concerted effort in systematically
constructing a common ASL corpus for public dissemina-
tion. At Boston University, Neidleet al. [6] have created
such a dataset using SignStream, which is a system for lin-
guistic annotation, storage, and retrieval of ASL and other
forms of gestural communication. This dataset also had no
wearable aids, but the video was sampled too coarsely. On
an average there were only 5.8 frames per sign. So, we had
to do our own data collection.

Setting the realistic long term goal of automated ASL
recognition, but in a constrained domain, we selected the
sentences that would be used while communicating with
deaf people at airports. Data was collected and ground
truthed by an ASL interpreter. A color video camera was
used. The background was kept plain. The dataset has 39
distinct signs forming 25 sentences. There are 10 to 12 in-
stances of each of the sentences. The details of this data is
available in [7].

3. Relational Distributions and Space of Prob-
ability Functions

In most of the previous works incontinuousASL, detec-
tion and tracking of hand have been simplified using colored
gloves [12] or magnetic markers [15]. Even other sign lan-
guage recognizers have used colored gloves or data gloves.
Only recently there has been effort to extract information
and to track directly from color images, without the use of
special devices [19], but it has only been used forisolated
sign recognition. As we shall see, our representation does
not require tracking of hands. We would like these represen-
tations to be somewhat robust to low-level errors. We use
the Canny edge pixels of each video frame as the low-level
primitives.

Grounded on the observation that theorganizationor
structureor relationshipsamong low-level primitives are
more important than the primitives themselves, we focus
on the statistical distribution of the relational attributes ob-
served in the image, which we refer to asrelational dis-
tributions. Such statistical representation also removes the
need for primitive level correspondence or tracking across
frames. Such representations have been successfully used
for modeling periodic motion in the context of identifica-
tion of a person from gait [14] and non-periodic motion
in the context of sign recognition [7]. Here, we use it
to build statistical models for non-periodic motion in ASL
signs. Primitive level statistical distributions, such as ori-
entation histograms, have been used for gesture recogni-
tion [3]. However, the only uses of relational histograms
that we are aware of are by Huet and Hancock [4], who
used it to model line distributions in the context of image
database indexing. The novelty of relational distributions
lies in that it offers a strategy for incorporating dynamic as-

pects.
We refer the reader to [14] for the details of the rep-

resentation. Here we just sketch the essentials. Let
F = {f1 , ..., fN } represent the set of N primitives in an im-
age. For us these are Canny edge pixels of the image. Let
Fk represent a random k-tuple of primitives, and the rela-
tionship among k-tuple primitives be denoted byRk. Let
the relationshipsRk be characterized by a set of M at-
tributesAk = {Ak1, ..., AkM}. For ASL, we use the dis-
tance of the two edge pixels in the vertical and horizontal
direction(dx, dy) as the attributes. We normalize and rep-
resent the distance between the pixels in an image size of 32
x 32 to reduce the size for further processing. The shape of
the pattern can be represented by joint probability functions:
P (Ak = ak), also denoted byP (ak1, ..., akM ) or P (ak),
whereaki is the (discretized in practice) value taken by the
relational attributeAki. We term these probabilities as the
Relational distributions.

One interpretation of these distributions is:

Given an image, if you randomly pick k-tuples
of primitives, what is the probability that it will
exhibit the relational attributeak? What is
P(Ak = ak)?

Given that these relational distributions exhibit complicated
shapes that do not readily afford modeling using a combina-
tion of simple shaped distribution, we adopt non-parametric
histogram based representation. However, to reduce the size
that is associated with a histogram based representation, we
use the Space of Probability Functions (SoPF).

As the hands of the signer move, the relational distribu-
tion changes. Motion of hands introduces non-stationarity
in the relational distributions. Figure 1 shows example of
the 2-ary relational distributions for the sign ‘CAN’. In the
relational distribution’s plot, the vertical axis represents the
joint probability and the two horizontal axes represent the
attributes. Notice the change in the distributions as the
hands come down. The change in one attribute dimension
(vertical distance between edge pixels) in the plots can be
seen clearly as the hands come down, while there is com-
paratively less change in the other attribute dimension.

Let P (ak, t) represent the relational distribution at time
t. Let√

P (ak, t) =
n∑
i=1

ci(t)Φi(ak) + µ(ak) + η(ak) (1)

describe thesquare rootof each relational distribution as
a linear combination of orthogonal basis functions, where
Φi(ak)’s are orthonormal functions, the functionµ(ak) is a
mean function defined over the attribute space, andη(ak)is
a function capturing small random noise variations with
zero mean and small variance. We refer to this space as
the Space of Probability Functions (SoPF).



Figure 1. Variations in relational distributions with mo-

tion. The left column shows the image frames in the sign

‘CAN’. The middle column shows the edge pixels, and

the right column shows the relational distributions

We use the square root function so that we arrive at a
space where the distances are not arbitrary ones but are re-
lated to the Bhattacharya distance between the relational
distributions, which is an appropriate distance measure for
probability distributions. Its proof can be found in [14].
Given a set of relational distributions,{P(ak, ti) | i =
1, ..., T}, the SoPF can be arrived at by principal compo-
nent analysis (PCA). In practice, we can consider the sub-
space spanned by a few (N � n) dominant vectors associ-
ated with the large eigenvalues. Here, most of the variation
is captured by the eigen vectors associated with the top 20
(largest) eigen values. Thus, a relational distribution can
be represented using these N coordinates (ci(t)s), which is
more compact representation than a normalized histogram
based representation. The ASL sentences form sequences
of points in this Space of Probability Functions.

4. Supervised Learning using Functional Data
Analysis

In the first learning scenario, we use sign samples that
are manually segmented from sentences. Each sign sample
consists of a sequence of SoPF coordinates. Each coordi-
nate sequence can be looked upon as samples of a smooth
curve, or function, in the SoPF space. We arrive at the
underlying smooth functional representation for each sign
sample using B-spline interpolation [9, 10]. This converts

each training sequence into functional data, which are then
smoothed and registered to arrive at a single statistical func-
tional model [9, 10]. The specific steps involved are as fol-
lows:

1. Each training sequence of SoPF coordinates are
time-normalized by linearly interpolated resampling
mapped to a fixed time period, which is chosen to be
the mean length of all the sequences. For further ma-
nipulation, the normalized data is again resampled at a
20 times finer resolution than the original data.

2. All the time-normalized, discretely sampled, se-
quences are then together turned into afunctional data
object, which represents the underlying sequences of
continuous functions in terms of basis functions (B-
splines, in our experiments) and the coefficients re-
quired to reconstruct the observed data. The functional
data of theith sequence at time t is represented by

xi(t) =
N∑
k=1

αikφk(t) (2)

whereφ1, φ2, φ3, ..., φN are the N basis functions. The
coefficients,αik, determining the above expansion are
obtained by minimizing the sum of squares of the dif-
ference of the discrete data,dij , where j=1, 2,..., n rep-
resent the n sampling(observation) points, to the corre-
sponding values ofxi, i.e.

SSE(di, α) =
n∑
j=1

[dij −
N∑
k=1

αikφk(tj)]2 (3)

is minimized for theith sequence of the data. The
number of basis function in the B-Spline representa-
tion, N, can be determined byN = NR + ND + 4,
where theNR represents the required resolution, i.e
the minimum number of features or events needed to
be present in the observation.ND is the highest order
of derivative that needs to be retained in the observa-
tion. In our experiments, we have used cubic B-Splines
and consideredNR to be 10 andND to be 6.

3. The functional data,xi, represented above is further
smoothed by minimizing the following penalty crite-
rion:

PSSE =
∫

[xi(t)− zi(t)]2dt+ λPR(zi) (4)

wherezi is the smoothed form of the data and the last
term on the right side of the equation is forpenaliz-
ing the roughnessof zi. PR(zi) can be defined as the
integral of square of the second derivative ofzi, i.e.,

PR(zi) =
∫

[z′′i (t)]2dt (5)
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Figure 2. Supervised learning of word models. (a) shows the plots of just the first dimension of SoPF representation w.r.t

time, of five instances of the sign ‘CAN’. (b) shows the interpolated data. (c) shows the smoothed data, (d) shows the mean

of the smoothed data. And (e) shows the registered curves.

The amount of smoothing can be controlled by varying
the value of the smoothing parameterλ.

4. The mean,µ(t), of the smoothed sequences is then
computed.

5. Each of the smoothed curves is registered to the mean
curve,µ(t), by estimating a warping function,hi(t),
for each of them so that the registered curves,ri(t) =
zi[hi(t)], minimize a global criterion:

REGSSE =
M∑
i=1

∫
T

[ri(t)− µ(t)]2dt (6)

where M is the number of curves and T is interval over
which the curves are registered. The process of regis-
tration is then done iteratively till a convergence crite-
rion is reached. We use the convergence criterion of
0.01 and an iteration limit of 5 iterations.

6. The covariance is computed at each of the points in
the time axis. Mean and covariance functions together
form a model of each sign. Both the mean and covari-
ance are computed in the same way as for any other
statistical observations, from all the replications of ob-
servation at each time instant in the functional data ob-
ject.

For more detailed discussion on the above processes, we
refer the reader to [9, 10]. The code at [8] was used for our
experiments.

Figure 2 illustrates the above modeling process using just
the first dimension in the SoPF representation of each sign.
We conduct the actual analysis in a 20 dimensional SoPF
space, however, the figure is sufficient to illustrate how the
traces are simultaneously registered and mean representa-
tion is extracted. In addition to the mean, we also store the
covariances among the 20 dimensions at each time instance,
i.e. we also store a multidimensionalcovariance function.

5. Unsupervised Learning of Sign Models

Is it possible to learn a sign model without supervision
or requiring manual segmentation of words in the training
dataset? In this section, we outline an approach, again based
on functional data analysis, for this task. The data consists
of many ASL sentences, each consisting of different signs
of similar temporal duration, but with the constraint that all
contain one common sign. We can automatically generate
the model for this common sign. For this, instead of con-
ducting functional data analysis at the word level, we con-
sider thewhole sentence. The outline of the steps are as
follows:

1. We build the mean and covariance function representa-
tions from the functional data object for the set of train-
ing sentences, using the steps outlined in Section 4. Of
course, the registration will be of poor quality since,
the sentences contain different signs. However, the
registration should be good over the part of sentences
containing the common word.

2. The trace of the covariance matrix for each time instant
forms a measure of the variability of the registration
among the sentences.

3. The portion of the mean and covariance functions over
which the variability is low form the model of the com-
mon sign. We can additionally use prior knowledge, if
available, about the possible location of the common
word to prune out residual ambiguities.

The process is illustrated in Figure 3, again using just one of
the 20 dimensions of the SoPF representation. The common
sign in the 23 sentences training set corresponds to the sign
‘IDPAPERS’. We have 12 instances of the sentence ‘IDPA-
PERSWHERE’ and 11 instances of the sentence ‘IDPA-
PERSTABLE’. We see the variance in the registered curves
is low towards the first half of the sentence, when the com-
mon sign occurs. The variance is also low towards the end
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Figure 3. Unsupervised learning of sign models. (a) shows the plot of the first dimension of the SoPF representation for

sentences with one common word ‘IDPAPERS’, smoothed with smoothing parameter( λ)= 0.1. (b) shows the registered curves

for the same set of sentences. (c) shows the variation of the standard deviation of the registered sentences. (d) shows the

relevant time period indicating the common sign. (e) shows first SoPF dimension of the mean representation of the model

formed for the sign ‘IDPAPERS’. (f) and (g) respectively show the plots of the first vs. second SoPF dimension, and the first

vs. second vs. third SoPF dimension of the mean of the learnt model for the same sign.

because of end-of-sentence coarticulation, i.e. all the sen-
tences end in a common stance. This is easy to filter out
based on prior knowledge of the common stance, or by sim-
ply ignoring the last few frames.

6. Recognition

The models created above for each of the signs are used
for recognizing the signs incontinuousASL sentences. At
present, we use a simple correlation based recognition pro-
cess. Any given test sequence is turned into a functional
data object, in much the same way as in the model forma-
tion process. The relational distribution of each frame of the
test sequence is represented as a point in the 20 dimensional
SoPF. The test sentence traces a curve in the SoPF space.
That curve is interpolated in the same way as in the case
of the training data, and then converted to functional data,
using the same B-spline basis functions. Then the test data
is smoothed to remove irrelevant features. The smoothing
parameter is kept same as in the training set, i.e. 0.1.

Now each sign model is matched to the test sentence by
correlation. The distance is calculated by summing up the
distance of each point of the mean curve of the sign from
the test sentence curve, and then normalizing the sum by

the sign’s length. Note that one of the property of the SoPF
is that Euclidean distances in this space correspond to Bhat-
tacharya distance between the corresponding relational dis-
tributions [14]. The sign is said to be located at the point of
minimum correlational distance. The value of the minimum
correlation is a measure of distance of the sign model to the
sentence.

7. Actual Recognition Experiments

The data set used for the experiments consists of 16 signs
forming 10 sentences, with two to three signs per sentence.
The average length of the test sentences was 90 frames.
First, we present supervised learning (Section 4) results.
Each learnt mean functional data model is correlated with
the functional data object constructed from the test sen-
tence. The model signs are sorted based on the minimum
correlational distance; the sign with smaller minimum cor-
relational distance is more likely to be present in the sen-
tence. To compute recognition rates, we consider if the
correct sign occurs within the topn matches in an-sign
sentence. In this way, the recognition rate found was to be
57%. If we consider the topn+ 1 matches, the recognition
rate increases to 69%. We note that these rates are for a very



simple recognition strategy; we expect the rates to be higher
for better recognition strategies. As the focus of this paper
is in modeling, we did not yet explore more complicated
strategies.

The correlation based recognition is good at localizing
signs in a sentence. For most of the signs in the sentences,
the location is found near to the actual position. Signs were
located with about 92% accuracy. We define the error rate
as the difference of the actual starting frame number of the
sign to computed starting frame number, normalized by the
total number of frames in the sentence.

For unsupervised modeling, we considered four signs,
viz. ‘WHERE’, ‘SUITCASE’, ‘FINISH’ and ‘IDPAPERS’.
The built models were tested on sentences not used in train-
ing. Four out of six possible occurances of the above words
in the test data were located with 82% or higher localization
accuracy.

8. Conclusions and Future Work

This papers presents a functional approach for super-
vised and unsupervised modeling of the signs of American
Sign Language as smooth curves with variance at each point
in the curve, in a multidimensional space. The approach
uses plain video data that does not use any wearable aids
like data gloves, magnetic trackers etc., as its input. Instead
it relies on inter-feature relational distribution in any image
frame. We are presently working on automating the thresh-
olds used in the above process of self-learning of signs, and
using sentences with common signs at different locations.
The use of dynamic time warping while matching the sign
and the use of covariance while finding the distance from
the sentence, can significantly improve the recognition rate.
Also the above approach has to be tried on a dataset having
more number of signs and sentences.
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