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Abstract

This paper presents several results on images of various
configurations of conics. We extract information about the
plane from single and multiple views of known and un-
known conics, based on planar homography and conic cor-
respondences. We show that a single conic section cannot
provide sufficient information. Metric rectification of the
plane can be performed from a single view if two conics
can be identified to be images of circles without knowing
their centers or radii. The homography between two views
of a planar scene can be computed if two arbitrary conics
are identified in them without knowing anything specific
about them. The scene can be reconstructed from a sin-
gle view if images of a pair of circles can be identified in
two planes. Our results are simpler and require less infor-
mation from the images than previously known results. The
results presented here involve univariate polynomial equa-
tions of degree 4 or 8 and always have solutions. Appli-
cations to metric rectification, homography calculation, 3D
reconstruction, and projective OCR are presented to demon-
strate the usefulness of our scheme.

1. Introduction

The geometry of multiple views has been a subject of ex-
tensive research in the past few years. Relationships exist
between corresponding entities of images of a scene in mul-
tiple viewpoints. These relationships are well understood
for points, lines, and simple primitives [3, 4]. The images� and ��� in two views of any point � lying on a plane are
related as �����
	�� in homogeneous coordinates. The non-
singular ��
�� projective transformation matrix 	 is called a
homography. Homography can be recovered from sufficient
number of point and line correspondences [4]. Non-planar
points are related by an algebraic constraint ��� ��������� ,
where � is a ��
�� matrix of rank 2 called the fundamen-
tal matrix. Corresponding points are similarly related by a
trifocal tensor when three views of a scene are given.

Metric rectification of planes involves finding its fronto-
parallel view from a projectively transformed view. The

properties of parallel and perpendicular lines have been
used for metric rectification of planes [7]. Multiple views
from uncalibrated cameras have been used for projective
reconstruction of the scene using dense correspondence of
points; correspondences between the scene and the image
can lead to metric reconstruction of the scene [4]. Vanish-
ing points, i.e., the images of points at infinity, have been
used for single view affine reconstruction [2].

Point and line correspondences are not available in many
situations or could be noisy. Higher order parametric curves
can, however, be recovered robustly from images due to the
large number of points defining them. Algorithms for pro-
jective and metric reconstruction of images of conics in the
world from two or three views are presented in [8, 11]. The
problem of reconstruction of quadrics from multiple views
is addressed in [9]. We discuss the case of single view re-
construction in this paper. A method to recover the planar
homography from conics and other curves given the epipo-
lar geometry can be found in [12]. A discussion on the re-
covery of homography and fundamental matrix using corre-
spondences of higher order parametric curves can be found
in [5]. Their results can work for conics, but do not ex-
ploit any special property of conics. Their solution involves
a set of complex multivariate non-linear equations which
cannot be easily solved. For instance, homography calcu-
lation from conics using their formulation will result in 5
non-linear equations in 8 unknowns with infinite solutions.
We show in this paper that the problem can be reduced to a
univariate, fourth-degree polynomial equation for two con-
ics. An earlier work [13] that has dealt with homography
calculation from conics used a minimum of 7 conic cor-
respondences. They used a ��
�� transformation relating
conics and derived the homography in a linear fashion us-
ing it. We show that only two conic correspondences are
enough for calculating the homography and present an effi-
cient algorithm for doing so. A very recent paper describes
a method to recover camera calibration given two parallel
(i.e., not necessarily coplanar) circles [14].

We present results for metric rectification, homography
estimation, and 3D reconstruction for various configura-



tions of conic correspondences in this paper. First, we show
that the minimum number of conics required for recovering
the homography matrix, without any point correspondence,
is two. Conic correspondences can be classified into four
cases: (a) single view of coplanar conics, (b) multiple views
of coplanar conics, (c) single view of non-coplanar conics,
and (d) multiple views of non-coplanar conics. We describe
an approach to perform metric rectification from a single
view of coplanar conics using the information that the con-
ics are circles. We also present a method for homography
estimation from multiple views of general coplanar conics.
Two conic correspondences are all that is required for it. We
then present a reconstruction algorithm from conics. Unlike
previous approaches, our method works for a single view of
non-coplanar conics.

The next section establishes the minimum number of
conic correspondences required for homography calcula-
tion as two. Section 3 presents metric rectification from
a single view of two circles. Section 4 extends this method
to finding the homography from two general conic corre-
spondences. Section 5 presents 3D reconstruction from a
single view of two planes with two circles each. Section 6
discusses an application of using conic correspondences in
the form of projective OCR. Section 7 provides some con-
cluding remarks.

2. Number of Coplanar Conics

Conic sections are planar curves defined by a second de-
gree parametric equation. Conics are abundantly available
as many man-made structures follow them. A general conic
section can be expressed as � ��� � ��� , where � is a point
expressed in homogeneous coordinates and
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Any projective transformation 	 can be split into a sim-
ilarity transform 	�� , a pure affine transform 	�
 and a pure
projective transform 	�� such that 	 � 	�� 	�
 	�� [7]. In
general 	�� , 	�
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A conic � gets transformed by a homography 	 as����� 	?> ����	?> 7

. A circle � 7 first undergoes a simi-
larity transform 	 � to become another circle � 9 , then an
affine transform 	 
 to become an ellipse �#@ , and a projec-
tive transform 	 � to become conic section �BA . Let
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There are infinite number of ellipses which undergo dif-
ferent pure projective transformations to result in any given
conic. This is because the number of equations that an
ellipse-conic correspondence offers is 5 (Eq. 2) and the
number of unknowns is 7 (5 for the ellipse and 2 for the
projective transform). Each of these ellipses can be gener-
ated by a unit circle by a similarity transformation followed
by an affine transformation. Therefore, an infinite number
of possible homographies differing by a general projective
transform can exist between two given conics. In the case
of imaging an unknown circle, we get only 5 equations in
7 unknowns (3 for �#9 , 2 for affine, 2 for projective or 5
for � @ , 2 for projective) which again have infinite possible
solutions. Thus, given only one conic correspondence no
concrete information can be gathered about the projective,
affine or similarity part of the homography.

We now consider the case of two conic correspondences.
From Eq. 2, we get the following for one of the conics.� � � � � � Hed � � 6�7 H �56 97

	 � � � 	 � H � � 6:9 H � � 6�7 H �56�7f6:9� � � � � � H �56�7� � � � � � Hed � � 6:9 H �56 99
� � � � � � H �56:9� � � � �

Twelve equations in fourteen unknowns are obtained using
two sets of the above equations. If a circle getting trans-
formed as an ellipse using a pure affine transform, we can
get from Eq. 1,� � 3:� � � 0 9 � 3�g 2 9 H -43 0 9ih � � 0 9 3^g 2 9 H -�3 0 9�h � const� � 3 	 � � 0 9 � 3 0�2 � � 0 3 2 � constant

Therefore,
� � 7 34� �7 =

� �9 3:� �9 and
� � 7 3 	 �7 =

� �9 3 	 �9 , which
gives two more equations. We have 14 equations in 14 un-
knowns. It can be shown that these equations reduce to a



univariate polynomial equation of degree 8 which has at
most 8 solutions for 	�� . This process can be extended to
calculate the entire homography between two views using
two conic correspondences. Having more than two conic
correspondences would result in an over-determined set of
equations which could provide more robust solutions. It can
also be shown that one conic correspondence with a point
correspondence on the conic is sufficient for homography
calculation. However, it is difficult to obtain a point corre-
spondence on a general conic and therefore, this method is
of purely theoretical interest.

In summary, no information can be obtained from one or
multiple views of one general conic. However, identifica-
tion of two circles is sufficient to obtain the homography up
to similarity.

3. Single View of Coplanar Conics

Many documents and billboards contain circles which result
in conics when imaged. The exact equation of the circles is
not known. We show that a fronto-parallel view of the scene
can be generated given 2 circles on a plane. Two conics, in
general, intersect in four points, real or imaginary. Consider
the conic sections0 � 9 Hed � g���� H�� h H 2 � 9 H d�� � H	� � �

.0 � � 9 H d � g
� � � H�� � h H 2 � � 9 H d�� � � H�� � � � (3)

Eliminating � from these equations results in an equation of
the fourth degree in � , giving four values, real or imaginary,
for � . Eliminating � 9

from these two equations, we see that
there is only one value of � for each value of � . Thus, there
are only four points of intersection. All circles pass through
the circular points 
 � g'- . � . � h � and � � g - . � � . � h � [4].
Therefore, two of the points of intersection of any two cir-
cles are the circular points. Consider the case where the
circular points are subjected to a general projective trans-
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 by g
��� � � ��� h and 	 � by g
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circular points cannot get mapped onto points with both real� and � coordinates because then the matrix 	 becomes
rank deficient. This is because then � 9 � � � � 7 � � � � and� � � � � �[A�� � � � which implies � 7 3#� 9 �$�[A43�� � �%� � 3#� � .
(Or, � � �&� � � � , in which case 	 is affine, which is han-
dled later.) That is, the first two columns are related by a
scale, which implies that the matrix is rank deficient. Also,
the � and � coordinates of the projected circular points are

conjugate to each other. Thus, two or four of the points of
intersection will have either the � or the � coordinate (or
both) as imaginary. We get one or two pairs of imaginary
points such that within each, the � and � coordinates are
conjugates of each other.

Let the two conics present in the view be given by Eq. 3.
Since they are obtained from imaging circles, solving them
would give us the circular points. These can be used to find
the dual conic �(') � 
�� � H �*
 � [4]. The matrix 	�� 	 

can be obtained using the dual conic [7]. This degenerate
dual conic is invariant to similarity transform and is given
as � ') �

�� - � �
� - �
� � �
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where . �0/ 0 2
� -43 021 defines the affine transformation

and , �43 6 7 6 9�5 defines the projective transformation. The
projective and affine components are determined directly
from the image of �6') but the similarity component is un-
determined. The circular points get projected to points at
infinity if the transformation is either similarity or affine.
Solving the above equations will not yield the correct re-
sult. For this case, consider Eq. 3 of the conics using ho-
mogeneous coordinates. Solve for points of intersection at
infinity by setting 7 � � . This results in the following
equations. 0 � 9 Hed � � � H 2 � 9 � �0 � � 9 H d � � � � H 2 � � 9 � �

<
This would give either one or two pairs of circular points.
Thus, we obtain a maximum of four pairs of circular points,
two for the projective case and two for handling the affine
and similarity cases. The degenerate dual conic is obtained
in each case to rectify the image. One of the four possible
resultant images is the required rectified image. The exact
equations or the relative positions of the circles in the scene
need not be known. The ease of specifying a conic section
makes it possible to obtain the result with minimal corre-
spondences. This method does not result in complex multi-
variate non-linear equation and guarantees a result for every
input. We cannot determine which of the four possible solu-
tions is the correct one without additional information about
the scene such as the ratio of the radii of the circles or the
distance between their centers.

The algorithm for metric rectification can be summarized
as follows.



1. Obtain the equations of the two conics from the image.

2. Solve them using non-homogeneous coordinates and homo-
geneous coordinates with ��� � .

3. Obtain a maximum of four pairs of imaginary points with
conjugate � and � coordinates.

4. Treating each pair as the circular points, obtain four different
matrices for ���	��
 .

5. One of these four matrices results in the actual rectification.

Figures 1 shows the single view of some of the images
containing unknown coplanar circles and their rectified im-
ages using the above algorithm. In all our experiments, the
equations of the conics in the image were computed from
their boundary points by the method described in [6]. The
method has the advantage of explicitly modelling noise and
providing a reliability score.

Figure 1: Circles in the left images were used to rectify
them to get the right images. The circles representing the
nodes of the graph in the book and the ’O’s in the classroom
board were used for rectification by projectively transform-
ing them to result in circles. The rectification is quite good;
the images on the right show the quadrilaterals to which the
rectangular images on the left map.

4. Multiple Views of Coplanar Conics

Multiple views of a plane containing conics can help in
recovering the homography between the views. Previous
approaches to homography calculation from conics require
a minimum of 7 correspondences [13]. Other approaches
to homography calculation from higher order parametric
curves fail in the case of conics as they result in insufficient
number of equations [5].

Two given conics intersect at 4 points. If these points can
be recovered and corresponded, the homography can be cal-
culated directly. If not, both images can metric rectified by
assuming that the given conics are images of circles. Note
that this assumption is not valid when the conics intersect at

4 points because any two circles can intersect at a maximum
of 2 real points. The method works even when the conics
are not obtained by imaging circles. Even though the recti-
fication would be incorrect, both the views are transformed
incorrectly in a similar way and the final homography is cal-
culated using this rectified views.

Given a view with conics � 77 and � 97 , obtain the ho-
mography 	�7 such that � 77 � 	 > �7 � 77 	 > 77 and � 97 �
	 > �7 � 97 	 > 77 where � 77 and � 97 are circles. Similarly, for
the second view containing conics � 79 and � 99 , we obtain the
homography 	�9 such that � 79 � 	 >��9 � 79 	 > 79 and � 99 �
	 > �9 � 99 	 > 79 where � 79 and � 99 are circles. If the views
are of the same scene, there exists a similarity transform 	 �
such that� 77 �
	 >��� � 79 	 > 7� and � 97 � 	 > �� � 99 	 > 7�
We can solve for 	 � using two point correspondences, such
as the centers of the circles in the rectified view as similar-
ity transform preserves the centers. The center of a circle0 � 9 H 0 � 9 Hcd"� � H d � � H � �
� is given as g � � 3 0 . � � 3 0 h .
The homography between the two views is the product	�7 	�� 	 > 79 . We can obtain a unique 	�� if the radii of
the two circles are different. If the radii are the same, we
cannot determine which center in one view corresponds to
which center in the other. This results in the rotation and
translation being unknown. If the circles are concentric, the
scale and translation can be determined from the radii and
the center, but the rotation ambiguity will remain. This ap-
proach involves simple univariate polynomial equations of
degree 4 which always have a solution.

In summary, the algorithm for homography computation
from 2 views is

1. Obtain the equations of the conics in both views.

2. Rectify both views assuming that the conics are images of
circles. The results are correct even if this is not so. Let �
�
and ��� be the rectifying homographies.

3. Calculate the similarity transform ��� between the two recti-
fied views using two point correspondences obtained by find-
ing the centers of the two circles.

4. The homography between the two views is obtained as
����� � ��� �� .

Figure 2 shows the results of homography calculation for
a real image. The two ’O’s in the sign were assumed to be
circles. The image obtained by applying the homography to
the left image is shown at the bottom.

5. Single View of Non-coplanar Conics

Lastly, we consider the case of imaging non-coplanar con-
ics, specifically the case where there are two planes con-
taining at least two conics each. We show that we can ob-
tain the 3D reconstruction of the scene from them, provided



Figure 2: The homography between the top images was
computed. The bottom image is the result of applying it
to the top left one.

they are images of circles. The previous approaches to 3D
reconstruction from conics [8, 11] are restricted to the case
of multiple views. Our approach is similar to the one in [2],
which finds 3D affine measurements from minimal geomet-
ric information such as the vanishing line � of a reference
plane and a vanishing line for another plane not parallel to
the previous plane 6 . To calculate the height of an object,
we use a reference height ��� specified by a base point

2
�

and a top point
$
� , a parameter � such that

� �
��� 2
� 
 $

�
���

��� g �	� 2 � h �
� 6 
 $
�
���

The height �
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of an object specified by the base point
2�&

and the top point
$ &

is given as

�
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�
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 $'& �
�
The measurements are restricted to the ratio of the heights
of objects, ratio of the lengths along parallel lines on the
plane and the ratio of areas on the plane. The complete
reconstruction of the 3D scene containing conics can be ob-
tained from its multiple views using the method described
in [11].

The vanishing line is the last row of the matrix used for
rectification. Metric rectification can be performed as de-
scribed in Section 3. The user has to specify a reference
height used for the reconstruction. The algorithm is sum-
marized as follows.

1. Obtain the equations of the conics on each plane and rectify
each plane.

2. Obtain the vanishing lines of the two planes from the rectifi-
cation transformation.

3. Use the procedure in [2] to obtain the 3D reconstruction of
the scene from these vanishing lines.

Figure 3: The 3D reconstruction of the top image was used
to render the bottom views.

Figure 3 shows the results of reconstructing the image using
the two circles on the wall. The lines on the floor were
used to get its vanishing line. Two different views generated
from the 3D model starting with the first view are shown.
The results are similar to those reported in [2] which used
parallel lines to obtain vanishing lines. Our approach gave
the height of the leftmost wall as 16.1 units compared to 16
units from [2].

6. Application to Projective OCR

Optical Character Recognition (OCR) is the process of con-
verting a document image to text. Normally, the input im-
age is scanned and presented to the OCR system. The doc-
ument might be skewed or scaled slightly. Projective OCR
is one that identifies the text from the image of a document
taken from a general view using a perspective camera. Con-
ventional OCR engine can be used on the document image
after metric rectification of the projectively distorted one.
Earlier approaches, such as [10], find the transformation as-
suming that the imaging system has the vertical vanishing
point at infinity. Others map the quadrilateral containing the
text in the image to a rectangle [1]. We assume that there
are two circles – either from character ‘O’ or otherwise –
in the text of the document. These can be identified auto-
matically by looking for conics in the image. Rectification
is then performed on the image by assuming ‘O’s to be cir-
cles. The recognition is independent of the aspect ratio; thus
this assumption produces good results. Figure 4 shows two
sample pages along with their rectified image. The filled
‘O’s in the heading were used to rectify the image. We took
10 different views of 7 pages, rectified them and fed them
to an existing OCR system with and without rectification.
An overall accuracy of 94.75% was achieved with rectifi-
cation when compared to an accuracy of 42.68% without
rectification.



Figure 4: Right images give the rectified versions of the left ones.

Type Configuration #Views Application Reference
4 Conics Non-coplanar 2 Fundamental Matrix Computation [5]
2 Circles Coplanar 1 Metric Rectification In this paper
7 Conics Coplanar 2 Homography Computation [13]
2 Conics Coplanar 2 Homography Computation In this paper
Conics Non-coplanar 2 3D Reconstruction [8, 11]
Circles Non-coplanar 1 3D Reconstruction In this paper

Table 1: Summary of applications of various configurations of conics

7. Conclusions and Future Work

This paper discussed various configurations of conics in
the scene. We presented several applications of geomet-
ric structure estimation from conics in the image, includ-
ing metric rectification of a single view of unknown circles,
homography calculation from multiple views of unknown
conics or single view of known conics, and 3D reconstruc-
tion from single view of unknown non-coplanar conics. The
algorithms are simple and do not require correspondences
of a large number of conics or the solution of multivariate
polynomial equations. A summary of the results is shown
in Table 1. Extensions to these methods which handle over
determined sets of equations, obtained due to the presence
of more than two coplanar conics, need to be explored.
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