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Abstract quality problems in the presence of global motion and bac
ground clutter. These quality problems can be attributed
Various video processing applications, such as tracking, the factthat[1] does not deal with the inherent shift varianc
requires low complexity and reliable segmentation of ob- problem associated with discrete wavelet transform.
jects. Global motion and background clutter often acts as It is well known that while applying wavelet transform
key constraints to perform reliable segmentation. In this pa- to a function, if the function and wavelets are discrete, th
per, we propose a video segmentation algorithm for tracking samples of the translated function, sags: +n) do not cor-
application that handles these constraints by operating on respond with the translated coefficients representing the d
high and low frequency wavelet bands simultaneously. crete wavelet transform unless the translations of the for
Furthermore, our method incorporates novel motion n = k2P (wherek andp are integers) are considered. As [1]
adaptation, clutter removal and region creation techniques. uses three levels of DWT decomposition, this problem mz
It successfully deals with various types of obstacles, suchincrease with each level. Thus, the compensation proce
as large global motion and high background clutter. Sim- done on the high frequency wavelet components is signit
ulation results demonstrate that the proposed algorithm cantly affected, leading to improper segmentation.
achieves appropriate performance in segmentation, atalow In this paper, we contribute a new moving object sec
complexity level. mentation algorithm for tracking application that succes:s
fully handles difficult situations created by background clut
ter and global motion, maintaining the low complexity leve
of the algorithm proposed in [1]. For this, we consider bot
the high and low frequency information obtained from a sin
gle level Stationary Wavelet Transform (SWT). We use st
Many object segmentation algorithms incorporating tionary wavelet transform to avoid the inherent shift vari
global motion have been proposed [1], [2], [3], [4] and [5], ance problem present in discrete wavelet transform.
but they are either computationally expensive or suffer from  As we know that using stationary wavelet transform in
quality problems. The algorithm proposed in [4] uses water- creases the computational load when compared to discr
shed transformation and fast motion estimation. But, it re- wavelet transform, we propose new processing steps whi
quires many preprocessing steps, e.g., prefiltering and elim-maintain the low complexity level and enhance the segme
ination of small local minima, which is unreliable and com- tation performance. The processing steps consists of moti
putationally expensive. The algorithm in [5] uses a compu- adaptation, clutter removal and region creation technique
tationally expensive recursive technique to detect multiple We achieve this low complexity level by working on binary
motions. In [2], a mixture of computationally expensive K- images during clutter removal and region creation.
Gaussian background model is used. The technique in [3] Motion adaptation is done by using an iterative tech
uses morphologically connected operators. This algorithmnique to estimate the motion parameters in accordance
does not have effective clutter removal technique. the global motion present. Binary median filtering acts a
[1] uses a multiresolution (3 levels) motion parameter an effective clutter removal tool. Region creation consis
estimation technique, followed by motion compensated dif- of a novel gap filling and false region reduction technique.
ferencing of high frequency components obtained by Dis-  In section 2, we give an overview of the proposed sec
crete Wavelet Transform (DWT) to isolate the objects. This mentation algorithm. In section 3, 4, 5, 6, we explain the ac
process is computationally inexpensive, but suffers from vantages of using both high and low frequency informatior

1. Introduction



the motion adaptation, clutter removal and region creation In the third step, motion adaptation is achieved by ca
techniques, respectively. In section 7, we present simula-culating the final motion parameters using an iterative aj
tions to endorse the effectiveness of our algorithm. Here weproach (Sec. 4). The estimated final motion paramete
compare the segmentation performance and execution timere then used to predict the current frame from the prey
of the proposed algorithm to that proposed in [1]. Section 8 ous frame in each iteration. Then, the difference betwee

concludes this paper. the predicted and the actual frame is calculated for both tl
high, HF, and low frequency, LF, bands. These two differ
2. Overview of Proposed Algorithm ence images are then thresholded to give the binary hig

By, and low, By, frequency images, respectively. We

The proposed algorithm steps are depicted in Fig. 2. InUs€éa simple framg difference technique to avoid Iarge cor
the first step, single level SWT is applied on each frame, F, Putations involved in other complex background estimatio
to obtain the high (HF) and low frequency (LF) information @nd subtraction techniques. The resulting two binary in
bands simultaneously as in Fig. 1. We use symlet wavelet2g€s are added to obtain the current binary imége
filters (symN) to do the SWT as symlet family of filters are
symmetric and hence have linear phase responsé{[8]., Be=Brr + Bur (3)

HF;, and H F3 consist of the horizontal, vertical and diag- The thresholds to obtaiR; » and B - are computed using

onal edge informa_tion of the frame F, respectively. In each the histogram distribution of the gray levels in the differenc
frame, the three high frequency imagé&F;, H F», H F3,

. : images.
are added to give the high frequency band, HF, as follows 6 |ast step, clutter is removed and regions are cr
| LFHFy HF, HF3 | = SWT | F | ated. Median filter (Sec. 5) is applied R to remove clut-
HE — HF, + HF, + HF; @ ter. This is followed by a gap filling algorithm to fill gaps

(black (0) pixels) within concentrated clusters of white (1
Thus, HF will have all the high frequency edge information pixels in B. (Sec. 6.1). A false region reduction technigue

present in the frame F. (Sec. 6.2) is then used to reduce false regions. As we wc
on binary images less amount of computation is require
rows columans ': The performance of the proposed segmentation algorith

is shown in Sec. 7. The segments are in the form of rec
angular shape which are usually used in various rule-bas
tracking algorithms, for example, as proposed in [1].

3. Processing both HF and LF Bands

The wavelet transform is able to retain the spatial cha
, : , acteristics of a signal in the transform domain in the form c
where L and H are lowpass and highpass Wavelet Filters €dges and can thus represent objects. In general, object
formation is significantly present in both HF and LF wavele
bands. We, therefore, consider both HF and LF band info
In the second step (Sec. 4), initial motion parameters rep-mation for object isolation. LF band information is espe
resenting camera motion are estimated by solving an errorcially useful in blurred video sequences, due to incorre
minimization problem obtained by 2D optical flow crite- focusing. Fig. 3(d) and Fig. 4(d) show the amount of infor
rion [7], applied to the low frequency band. Eight parameter mation acquired by using both LF and HF bands. Note i
projective/bilinear model [6] is used to represent these mo- Fig. 3(b) and Fig. 4(b) the object information is not clearly
tion parameters. To solve the 2D optical flow equation, the Present when only the HF band is considered.
partial derivatives (i.e., the horizontal, vertical and temporal
edges)F,, £, andE, are estimated as in Eq. 2. Differen- 4, Motion Adaptation
tial of Gaussian (DoG) is used to detect the horizontal and
vertical edges of the LF.

Figure 1. Two-Dimensional SWT Decomposition

Simulations have shown (Sec. 7) that the use of three le
[ B, E, | = DoG [ LFp, | els of DWT [1] is inaccurate in case of large global motion
‘ Furthermore, three levels of DWT unnecessarily increas

E,=LFr — LFFg (2) . . o
° » computational complexity when global motion is small. I
whereLFFr,, LFF, are the low frequency bands of the cur- is also noted that the shift variance problem of DWT furthe
rent, F., and previous framef,, respectively. worsen the segmentation performance. To overcome tt
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Figure 2. Block diagram of the proposed algorithm. the frame, respectively. For video sequences in CIF ar
NTSC/PAL format, for example, we use a window size o

] 4x3 and 7x6, respectively. Depending on the size of the m
drawback, we propose to use a single level SWT followed jap, fiter, its output may be fractional, i.e., neither a blacl

by an iterative estimation of motion parameters. \We use an ) nor 4 white (1) value. We convert thus all fractional val
eight parameter bilinear/projective two-dimensional motion | o< to white ).

model (Eq. 4, [6]).

As can be seenin Fig. 3(d) and Fig. 4(d), large amount
]T 4) clutter is present in the background. The proposed filter e
fectively removes the clutter (Fig. 3(e) and Fig. 4(e)) whicl

Using LF band, the initial motion parameters are first esti- in turn reduces the creation of false objects.
mated. For this, we use the optical flow minimization tech-
nigue [6], which is a computationally less expensive way to
estimate motion vectors with certain loss of accuracy.
Motion adaptation is an important requirement while de-
termining motion paramet_ers. Since the ir_1itia| motion pa- 6.1. Gap Filling
rameters (Eq. 4) are fractional approximation of the actual
values, we propose a motion-adaptive proportional incre-
ment of the initial valueq) which leads to parameters close A novel gap filling technique is used to connect cer
to the actual motion parameters. The increment is done intain white (1) pixels (by replacing black (0) with white (1)
an iterative way and the number of iterations used is depen-pixels) in the binary image. For this, the binary image i
dent on the amount of the estimated global motion. scanned first horizontally, and the number of black (0) pix
This concept is implemented by comparing the mean els between two white (1) pixels are counted. If the count
square error between the predicted and the current framas not greater than a threshold, then, a gap is assumed anc
in each iteration {/ S E..) with that of the previous iteration  the black (0) pixels are replaced by white (1) pixels in th
(M SE,). The iteration will continue as long a¥ SE, is detected gap. Similarly, the binary image is then scanng
greater thanV/ SE. to a precision of five decimal places. vertically using a different threshold. The thresholds fo
Note that in each iteration we are not estimating the motion the horizontal and vertical scan are set based on object &
parameters but are proportionally incrementing them. With frame sizes. As can be seen in Fig. 3(f) and Fig. 4(f), th
this approach, there is no significant increase in computa-proposed gap filling satisfactorily creates regions at the cc
tional load. rect object position.

a=1[ a0 19293 9145 46 a7

6. Region Creation



6.2. False Region Reduction ject entering and leaving the scene in the presence
less global motion.
To reduce false regions in the binary image resulting
from the previous algorithm steps, we (1) extend the iter- 2. Ferrari Sequence (FRS) of size 352x288: FRS consis
ative false object reduction [1] to binary filled images (to of high global motion, e.g., zoom out and translation
significantly reduce the number of iterations), (2) propose ~ Ihere is smoke in the background acting as camo
adaptation of thresholds used (to reduce ambiguities), and ~ flage.

(3.) propose Igmp processing (to reliably detect falsg €3 Coast Guard Sequence (CGS) of size 352x240: CC
gions). For this, both the rows and columns of the binary . . . L
includes two objects (where one disappears), signif

image are iteratively processed as follows. :
. . : cant global motion, and background clutter (e.g., wate
To process the rows, all the pixels in a particular row are

first added to give the valuer. This is then repeated for and rocks).
each row of the binary image resulting in an arraysof 4. Multiple Object Sequence (MOS) of size 320x240
threshold are set to zero. This threshold varies from frame ple, entering and leaving the scene. This sequence
to frame and is set to be a percentage of the maximuira very less global motion with objects taken at an inter
cv. _ _ section of roads.

A group of consecutive non-zera- € CV is called
“lump”. If the length of a “lump” is greater than a prede- Figure 3 shows intermediate processing stages for FR

fined threshold, then, it is assumed to represent at least ond he proposed algorithm (prop.) successfully combines H
object. Otherwise alir in the “lump” are set to zero. Then, and LF bands (Fig. 3 (d)), reduces the background clutt
only the rows corresponding to the non-zeroc CV are such as camouflage (Fig. 3 (e)), and creates region (Fig
considered for further processing. This results in smaller (f)). As can be seen, it provides more accurate segmer
matrices within the binary image. Note that one lump cor- compared to [1].
responds to one matrix and a matrix represents at least an
object. Hence if there is more than one lump in ¢hE sat-
isfying the predefined threshold, multiple matrices are pro- §
duced.
Similarly, the values in each column of the resulting bi- &
nary matrices are processed to give an array catledvec-
tor RV. If the length of a “lump” inRV is not greater than
predefined threshold, the elements representing this “lump”__
in RV are set to zero. Then, only the columns correspond-
ing to the non-zero elements &V are considered, which
generates again smaller matrices. .
The proposed column and row vector processing is ap-
plied iterativelyon the smaller matrices obtained from pre-
vious iteration until the size of each of the matrices does not
change. Each matrix then, will represent an object. With
this, regions created at positions where there is no object,
are effectively removed. Note that the gap filling step cre- (d) Binary Image (prop.)  (e) Clutter removal
ates prominent regions at the object positions compared td
background, hence, it reduces the number of iterations re
quired for false region reduction.

7. Experimental Results

We have tested the proposed algorithm and compared it
with the method in [1]. We present here sample results for -
the following video sequences (where F(n) denotesittie () Gap Filling (9) Segments (prop.)
frame or field):

Figure 3. Intermediate segmentation stages in F(30) for

1. One Car Sequence (OCS) of size 360x180: OCS in- ERs.
cludes background clutter. It has a relatively small ob-



(d) Binary Image (prop.) (e) Clutter removal

(f) Gap Filling (g9) Segments (prop.)

Figure 4. Intermediate segmentation stages in F(36) for
OocCs.

() F(35) of FRS (k) Segments (prop.) (I) Segments [1]
Figure 4 shows the various intermediate segmentation Figure 5. Segmentation in OCS and MOS.

stages for OCS. As can be seen, the proposed algorithm

results in significantly more effective segmentation as com- _ _ _ _

pared to [1], even in the presence of heavy clutter. motion, the number of iterations required per frame in th
It can be noted that due to the shift variance problem motion adaptation increases. However, our algorithm mail

in DWT, we observe false motion in Fig. 3(b), Fig. 4(b) tains the same complexity Ievgl as in [1] with better seg

at areas where no moving object exists. Similarly, use of Mentation. In CGS, our algorithm outperforms the algo

DWT may produce no motion at the moving object posi- rithm proposed in [1], in segmentation of moving objects

tions. SWT significantly tackles this problem (Fig. 3(d), whereas the execution time per frame is approximately tf
Fig. 4(d)) as it is shift invariant. same. In MOS, our algorithm is faster than that proposed

Figure 5 summarizes the good performance of the pro- [1], where moving objects in traffic are tracked.

posed algorithm compared to [1], as the later produces false

segments due to its inability to deal with high global motion Test Sgguence sec/fralnéz (prop.) sec/ frzainze (1)
and background clutter. : :
. . . FRS 2.71 2.48
Figure 6 shows the improvement in performance of the
. . . CGS 2.41 2.38
proposed algorithm as compared to [1] in CGS. In this se- NIOS 198 554
guence, trails on water by the boat, rocks and trees are - -

present significantly in HF bands. [1] uses DWT (which

is shift variant) and HF information only for segmentation Table 1. Computational complexity comparison between
of objects and hence results in false object and improper  the proposed (prop.) and the reference [1] algorithm (im-
Segmentation in VariOUS fl’ames. Use Of SWT along Wlth p|emented using the C |anguage under Sun OS 5.8 with
iterative approach to estimate motion parameters and con- 1 GHz processor).

sidering both HF and LF information, results in effective

segmentation in our proposed algorithm.

Table 1 compares the complexity level of our algorithm  Figure 7 demonstrates successful tracking of objects L
to that in [1], in terms of average execution time (seconds ing our algorithm where gray levels are used to label th
per frame). Note that in OCS, there is little global motion. objects during tracking. MOS is an example for traffic mon
Hence, the number of iterations required per frame in the itoring application.
motion adaptation are small and the complexity of our al-  Note that the inconsistent segmentation by the algorith
gorithm is less than in [1]. Note that in FRS, there is large proposed in [1] might significantly complicate object track
global motion, clutter and camouflage. Due to large global ing.
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Figure 7. Segmentation and tracking in MOS.
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