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Abstract

The first contribution of this paper is a probabilistic ap-
proach for measuringmotionsimilarity for pointsequences.
Whilemostmotionsegmentationalgorithmsarebasedona
rank-constraint on thespaceof affine motions, our method
is basedon spectral clusteringof a probability measure for
motionsimilarity which can be appliedto any parametric
model. Theprobabilistic framework allows for incorpora-
tion of informativepriors for thenoiseandcamera motion.
Similarlyspatialandtemporal priorscanalsobesubsumed
leading to usefulsegmentationtechniques.Our secondcon-
tribution is a tensor-decompositiontechniqueenablesusto
infer motion affinity from higher dimensional representa-
tions.Resultsarepresentedonreal imagesequences.

1. Introduction

During the pastdecade, a large body of work hasclarified
our understandingof the geometry of imageformation [2]
which has resultedin various structureand motion esti-
mationalgorithms. A basicassumptionfor thesemethods
is that the image sequence constitutesa single motion,
typically dueto a moving cameraobserving a rigid scene.
However, most real situationswould consistof sequences
that contain objects undergoing different motions. This
motivatesthe development of motion segmentation meth-
ods that identifiesgroups of features or objects that have
the samemotion. Most of thesemotion segmentation
methods have assumedan affine cameraobserving feature
correspondencesand perform a rank-basedfactorisation
( [1, 9] andreferencestherein). While having theadvantage
of treatingall datasimultaneously, a common limitation of
suchapproachesis that trackshave to either visible over
the entire sequenceor have to be “approximated” using
rank criteria. Moreover an algebraic rank-criterion does
not allow for eitheran incorporation of informationabout
thecameramotionor thesegmentation of otherparametric
models that arenot affine (e.g. epipolar geometry). Con-
sequently our motivation is to develop a generative model
that allows for a probabilistic interpretationof the motion
coherenceof features. Givenmeasurementsof the motion

“similarity” (or likelihood) of tuplesof points in the form
of an affinity matrix 1, spectralclusteringmethods allow
for a straightforward segmentation of the data. We very
briefly statethespectralclustering method here,thereader
is referredto [10, 3] for details.Givenapositivesymmetric
matrix P, its normalisedLaplacian is D � 1

2
�
D � P� D � 1

2

whereD is diagonal with di � ∑ j pi j . The segmentation
is achieved by thresholding (with thresholdof zero), the
secondsmallesteigenvectorof thenormalisedLaplacian.

As will be developed in subsequent sections, using a
probabilistic framework allows for an intuitively satisfac-
tory measure of motion similarity for a given parametric
motion model. Sincewe can incorporateany parametric
motion model into our scheme,it is vastly more general
than one that assumesonly affine motions. Moreover,
a probabilistic framework allows for easy incorporation
of prior knowledge of the cameramotion, observation
noise etc. which increasesthe accuracy of the method.
While the spectralclustering methods are applicableto
tuples of features, many models require more feature
correspondences. We addressthis problem by introducing
an approach to decomposinga tensorialrepresentation of
motionsimilarity (themultilinearcounterpartof theaffinity
matrix) into an affinity matrix that is efficiently computed
usinga randomisedalgorithm.

Section2 introducesanddevelopsourprobabilisticmeasure
for motionsegmentation. This probablisticmeasurefor the
affine model is described in Sec.3 andSec.3.1 describes
the randomiseddecomposition of the probability tensor.
Section4 describesexperimentalresultson real sequences
and Sec. 5 provides someconcluding remarks. We are
unable to consider other parametric models (epipolar
geometryandspace-timeaffinemodelsin particular) in this
paper dueto spaceconstraints.

1Theterm affinity matrix denotesa matrix of measurementsof similar-
ity for clustering andshouldnot be confused with the term affine which
denotesa particular parametricmotionmodel.



2. Probabilistic Formulation

The motivation for our approach can be best illustrated
using a simple one-dimensional example wherethe intu-
itive interpretation of the probability measureis easiest
to see. In the following, for pedagogicalpurposes,we
adopt a simplerigid translationmodelon one-dimensional
points. Extensionto more complex models like affine
motion follow naturallyandwill betakenup in subsequent
sections.

2.1 A Generative Model

Correspondencesin thefirst andsecondimagearedenoted
x andx � respectively andareassumedto move according
to eitherof two translationmodels,t 1 or t2. Theobserved
points in thesecondimagearesubjectedto Gaussiannoise
of standard deviation σ. Thus,wehavex � � x � t � n where
t �	� t1 
 t2 � andthenoisetermn � N

�
0 
 σ2 � . For measuring

theaffinity of a pair of points,let the tupleof pointsbe x i

andx j , wheretranslationst i and t j areequalif xi andx j

belong to thesamemotion model. We denote theboolean
condition that xi andx j belongto the samemotion model
asxi 
 x j . ThusP

�
xi 
 x j � denotes the probability that x i

andx j belongto thesamemotionmodel.Assumingagiven
translationt, we have for ith point ni � xi � � xi � t which
interpretedprobabilisticallygives

P
�
xi 
 x j � t � � P

�
ni � P � n j � � e

� 1
2σ2 � ni

2 � n j
2 �

(1)

sincethenoiseis assumedto beindependentandidentically
distributed. By substitutingthetermfor ni in Eqn.1 wehave
therelationship

P
�
xi 
 x j � t � � e

� 1
2σ2 � ni

2 � n j
2 � � e

� 1
2σ2 ��� ∆xi

� t � 2 � � ∆x j
� t � 2 �

where ∆x denotesx � � x for notational convenience.How-
ever sincewe neitherknow thevalueof t nor needto esti-
mateit for our purposes(we areonly interestedin segmen-
tationof pointsfor now) we canintegrateit out by means
of the BayesTheorem, i.e. P

�
x i 
 x j � ��� P

�
xi 
 x j � t � dt

implying that

P
�
xi 
 x j � � � e

� 1
2σ2 ��� ∆xi

� t � 2 � � ∆x j
� t � 2 �

dt (2)

Thetermof interestin theexponentof theabove equation
is
�
∆xi � t � 2 � � ∆x j � t � 2 whichsimplifiedto

2 � t � ∆xi � ∆x j

2 � 2 � 2 � ∆xi � ∆x j

2 � 2

(3)

Whenthistermis substitutedbackinto theintegral in Eqn.2
andafterintegrating out thetermt wehave

P
�
xi 
 x j � � e

� 1
2σ2 � ∆xi � ∆x j

2 � 2

(4)

In the above we have neglected some constant terms
that have no significancefor our result but the intuitive
interpretationof theresultis clear. For now, neglectingthe
effect of observationnoise,we notethat in thecasewhere
points xi andx j belongto thesamemotion model,we have
∆xi � ∆x j � 0 andP

�
xi 
 x j � � 1. In the casewherethe

two pointsbelongto differentmotionmodels,we notethat
the exponential term is a function of

�
t 1 � t2 � 2 and thus

the probability measureP
�
x i 
 x j � will be lower than 1.

Consequently theaffinity matrixbuilt outof thisprobability
measurecanbeusedto solve for motionsegmentation.

2.2 Prior for Motion Model

In the above analysis, we have derived the probability
measureof the likelihood that two points belong to the
samemotion model. In the processof integrating out
the translation term t we have derived the Maximum
Likelihood Estimate(MLE) by being agnostic about its
likelihood, i.e. we have given equal weightage in the
integral to every possibletranslationvalue. However this
is not thecasein a realscenariowhereexternalconstraints
tell us that certain motions are more likely than others.
For example, for a moving vehicle we know themaximum
possiblespeedandalsoknow that its more likely that the
vehicle is moving at its “average” speedthanat higheror
lower values. This knowledgecanbe easily incorporated
into our derivation in the form of a prior for the motion
P
�
t � . Incorporating this prior into the integral of Eqn. 2

will result in a Maximum A Posteriori(MAP) estimate,
P
�
xi 
 x j � � � P

�
xi 
 x j � t � P � t � dt. If we have a Gaussian

prior, P
�
t ��� N

�
µt 
 σt

2 � thenthe integral canbesolved for
analytically. We shouldpoint out that this is not a severe
constraint sincemost well-behaved motion priors can be
easily expressedin the form of a mixture of Gaussians,
sayP

�
t � � ΣkmkN

�
µk 
 σk

2 � wherem represents themixing
proportion of eachGaussianfunction N

�
µk 
 σk

2 � . It will
be notedthat due to the linearity of the integral operator,
sucha mixture of Gaussiansmodel will still result in an
analytic form for the integral. In general,we would like
to usethe MAP estimatewhenwe have someknowledge
of the form of the prior for the motion model. In the



absence of any useful knowledge of the motion prior we
take recourse to the MLE anddo not usea prior. While
learning a meaningful prior from imagesequencesis very
useful, it remainsbeyondthescopeof this paper. Similarly
theuseof spatialpriors is not dealtwith heredueto space
constraints.

In this sectionwe have derived a measurefor the likeli-
hood of a tuple of points moving according to the same
motion model. The influence of the priors of noisein the
observationsand priors for the motion is also described.
The probability measurederived in the caseof the one-
dimensional translationmodel easily carriesover to other
more complex motion models as will be describedin the
next section.

3. Affine Motion Model

In this sectionwe derive probability measuresfor points
moving according to an affine motion model. Following
thepedagogic example of one-dimensional pointsin trans-
lation,wecaneasilymodify theprobability measureto that
of an affine motion model. If we denotepoint correspon-
dencesin two imagesasp andp � , thenunderanaffine mo-
tionwehavep � � Ap � t whereA is a2 � 2affinematrixand
t is a two-dimensionaltranslationparameter. Underobser-
vationnoise,themoregeneralrelationship is p � � Ap � t � n
where n is thenoiseterm. We assumein subsequent anal-
ysis that the noiseterm is Gaussiandistributedwith zero
mean, i.e. n � N

�
0 
 Σn � whereΣn is a 2 � 2 covariancema-

trix. Rewriting therelationshipin vectorform wehave

 
x�
y�"! � � a11 a12

a21 a22 �  
x
y ! �  

tx
ty ! �  

nx

ny ! (5)

By collectingtheunknown motionparametersinto a single
vector a �$# a11 
 a12 
 tx 
 a21 
 a22 
 ty % wecanrewrite Eqn.5 as

 
x�
y� ! � � x y 1 0 0 0

0 0 0 x y 1 �& ')( *+ M

a �  
nx

ny ! (6)

which canbe compactly rewritten as p � � Ma � n. Note
herethatp � andM areknown quantitiesbasedonpointcor-
respondences. Following Eqn.1, for P

�
p i 
 p j � a� we have

P
�
n � � e

� 1
2nT Σn � 1n wheren canbe obtainedfrom Eqn.6,

i.e. n � p � � Ma. Rewriting thenoisetermswehave

nTΣn
� 1n �-, p � � Ma . T

Σn
� 1 , p � � Ma . (7)

� aTMTΣnMa � 2p � TΣn
� 1Ma � p � Σn

� 1p �� aTBa � cTa � d

where terms B,c and d are derived from the correspon-
dencesandthe noisecovariance. The above derivation is
for the probability measurefor a single point. However
sinceweassumethatthenoiseis Gaussianandiid, thenoise
termsareadditive in theexponents. In otherwords,when
we considerthe joint probability of two noisetermsfrom
points pi andp j the termsB,c andd would bemodifiedto
thearithmeticsumof theindividualterms,e.g.B � B i � B j .
Thereaderwill noticethatgiven this conditional probabil-
ity we can derive the analyticprobability measureby in-
tegrating out the motion parameters a, i.e. we have for
P
�
pi 
 p j � � � P

�
pi 
 p j � a� da, theform

�
P
�
pi 
 p j � a� da � � e

� 1
2 � aTBa� cTa� d � da (8)

The analytic form for this equation is easily derived by
completing the squares in variablea in a mannersimilar
to that in Eqn. 3. However in contrastwith the translation
model sincethe affine motion model has6 unknown pa-
rameters, two correspondencesp i andp j arenot sufficient
to solve for the affine motion as they provide only four
constraints. An even greater constraint is that for the
measureto beaccurateweneedacorrectprior for theaffine
model sincewe are integrating over 6 dimensions. In the
absenceof a known prior for themotionmodel,we usethe
following estimatorfor theaffinity betweensetsof points.

Givena setof k-tuple
�
k / 4� correspondenceswe linearly

solvefor theaffinemotionmodel andestimatetheprobabil-
ity measureaccording to thenoisemodel,n � N

�
0 
 Σn � . If

all points in thek-tuplebelong to the samemotionmodel,
the residualerror will be low andthe probability measure
will be high. The converseis true for the casewherethe
points belong to different motion models as the linear es-
timatewill be poor. An alternateway to interpret this ap-
proachis theprobability measurethusderived is similar to
thatin Eqn.8with astrongprior for theaffinemotionplaced
at µa � a0 wherea0 is the linear affine estimateusingthe
k-tupleof points.Theresultantrepresentationfor theprob-
ability measurewill bea tensorof dimensionsk. However
thespectralclustering techniquesarebasedontheaffinity of
tuplesof points. Thuswe require anappropriatetechnique
thatwill convertak-dimensional tensorialrepresentation to



a two-dimensionalprobability matrix. Recentwork in the
analysisof multilineardecompositionshave extendedstan-
dardlinearalgebra ideaslike thesingularvaluedecomposi-
tion (SVD) andthe eigen-decomposition to higher dimen-
sionalrepresentations[4, 5] and[7, 8] apply theseideasto
problemsin computervision.

3.1 Decomposition of the Probability Tensor

In the following we provide a brief sketchof tensor-based
ideasthat are usedin our scheme,the readeris referred
to [4, 8] for a detailedtreatment. In the caseof matrices
P, thesingular valuedecompositionP � U1SU2

T provides
an orthogonalisationof the row and columns spacesin
matrices U1 andU2. For an N-dimensional tensor 1 , the
“flattened” matrix representationP � n� can be obtained by
varying theindex alongdimensionn while holdingall other
dimensionsfixed. Eachsuchinstancegivesa vector which
is a columnin P � n� . Then-modeproductof a tensor1 and
a matrix U cannow bedefinedasfollows 12� n U � P � n� U.
Usingthis representationwecanrewrite thematrixSVD as
P � U1SU2

T � S � 1U1 � 2 U2. By extension, the tensorial
decomposition is given by 1 �43 � 1U1 � 2 U2 56565 � n Un,
where 3 is known asthecore-tensorandis themultilinear
equivalentof thesingularvaluematrix. Themodematrices
Un areobtained by anSVD of theflattenedmatrixP � n� and
settingUn to theleft matrixof theSVD.

In our casefor k-tuplesof points, we have a probability
tensorrepresented by 1 , where the entry pi1 7 8 8 897 ik is the
probability measure for the set of points indexed by� i1 
:565:5;
 ik � . Herethek-dimensionaltensoris of dimensions
N � N 56565 � N where N is the total number of points.
Moreover, we note that the probability measureis is
invariant to all index permutations π � i 1 
6565:5;
 ik � where π
is any elementof the set of permutations of k indices.
For example, the affine motion probability for points� 3 
 4 
 5 
 6 � , � 3 
 5 
 6 
 4 � , � 5 
 6 
 4 
 3 � areall identical. In other
words, the probability tensor 1 has a super-symmetric
structure whereall the k-mode spacesare identical. Thus
thedecompositioncanbeobtainedby flatteningthe tensor
along any dimension. We alsonotethat for our purposes
we are not interestedin the orthogonal representation U
alone but want to decomposethe tensorinto a form where
V is thedesiredaffinity matrix suchthat themodeproduct
of V with itself alongall dimensions resultsin therequired
tensor, i.e. 1 � V � 1 V � 2 V 565:5 � k V. Note that this
decompositionis valid only for the casewherethe tensor1 is super-symmetric, the proof of which is beyond the
scopeof this paper. In general, we note that the affinity
matrix V is of size N � N and is derived from the left
spaceof theflattenedmatrix P � n� , i.e. V � P � n� PT � n� . The
flattenedmatrix P � n� is of size N � Nk � 1, thus the large

numberof columns is a greatcomputationalload. But the
problem is further simplified if we considerthe following
representation. We write matrix P � n� �<# c1 
 c2 
65:565;
 cs%
whereci denotesthe ith column. Now V canbewritten as
∑i cici

T . This suggeststhat insteadof computing theentire
tensorandflatteningit, we canprovide an approximation
to the affinity matrix V by considering the sum ∑i cici

T ,
wherethe columns area small subsetof the entiresetof
columnsof theflattenedrepresentationP � n� . Thisprocedure
can be summarised in the following algorithm which is
bothefficient andalsodoesnot requirelarge-scalememory
allocationfor thetensorsincecomputationsaredone in situ.

Let = � � 1 
 2 
6565:5>
 N � be the set of indices for N corre-
spondencesand let k be the dimension of the tensor 1 ,
i.e. k-tuplesareusedto compute the probability measure.
Also we denote the probability measurefor the k-tuples� i1 
 i2 
6565:5;
 ik � asp � i1 7 i2 7 8 8 8?7 ik �
Randomised Algorithm for Decomposition of
Probability Tensor
SetV to beanN � N matrixof zeros.
for T trials do@ Setv to anN-dimensional columnvector of zeros@ Randomly select

�
k � 1� indicesA � � i1 
 i2 
6565:5;
 i � k � 1� � from =@CB i �D= andi E� A computev

�
i � � p � i 7 F �@ UpdateV G V � vvT

The resulting matrix V is the desired affinity matrix
measuring the similarity of motion betweenall pairs of
points. An alternateinterpretation of this algorithm is
that the entry V

�
i 
 j � is given by ∑ F p � i 7 F � p � j 7 F � where

i H A � /0 and j H A � /0, where
A

aresetsof
�
k � 1� -tuples

drawn from = . This canbeseento bea particularform of
marginalisationof the multidimensionalprobability tensor1 into a two-dimensionalaffinity matrix.

4. Experimental Results

In this sectionwe present resultson two imagesequences
that illustrate the ability of our motion segmentation
scheme.In the computationalperception of scenedynam-
ics [6], a preliminary step is to segment the sceneinto
coherently moving “objects”. Subsequent analysisis used
to labeltheseobjectvarious as“active” or “passive” agents
or stationaryobjectsetc. from which the perception is in-
ferred. In Fig. 1 we illustratethisproblemusingasequence
whereamoving handpicksupasodacan.Framesfrom the



(a) Moving Hand (b) Segmentation (c) After Pickup

Figure 1: (a) shows themoving handat thebeginning of thesequence,(c) shows theendof thesequence,afterthecanhas
beenpickedup. (b) shows thecorrectsegmentationobtainedover theentiresequence.Notethatwhile thecanandthehand
aremoving coherently afterthepickup, thefactthatonly thehandwasmoving before thepickupof thecanis reflectedin the
correctsegmentationachieved.

Figure 2: The affinity matrix betweenadjacentimagesof
the aerial sequence is estimatedusing the randomisedal-
gorithm for tensordecomposition(T � 200samples).The
featuresbelonging to thestaticbackground canbecorrectly
inferredfrom this affinity matrix (thelarge block).

beginning andendof the sequenceareshown in Fig. 1(a)
and(c) respectively. If we wereto segment thesceneusing
the first few imagesof the sequence,the moving hand
would besegmentedout of therestof thescene.Similarly
just using the last few imageswould result in concluding
that both the hand and the sodacan constitutea single
object as they move coherently. Thus it is important to
usetheentiresequencetoarriveatthecorrectsegmentation.

In our experimentwe track feature points (usingthe KLT
tracker) over the entire sequence of 84 imagesand use
the correspondences from every fifth image resulting in
17 setsof correspondences. For motion segmentation we
use a simple two-dimensional translationmotion model
(with the σ of noise set to 1 pixel) and compute the

affinity matrix betweenadjacent frames. Subsequently the
segmentation resultsof eachimagepair arecomputed by
spectralclustering and the information combined to infer
all possibleunique labels. The resultingsegmentation is
shown in Fig. 1(b) and can be seento show the correct
segmentation of the hand, the sodacan and the rest of
the sceneinto independent motion segments. The single
instanceof a point on the tablebeinggroupedalongwith
the hand is a result of a tracking error wherethe tracker
confusesa moving shadow with a point on the hand and
generatesa falsetrack.

In Fig. 3 we illustratetheuseof our affine motionsegmen-
tation schemeon a long aerial sequence. The sequence
consistsof abridgewheretwo vehiclesmoveindependently
andthe cameratracksthemfor over 700 frames. It must
benotedthat in sucha long sequencesthetracksof feature
points will bevisible only within a limited range of images
as they disappear from the field of view as the camera
movesahead. In order to interpret the information in the
sequence it is useful to build a mosaicof the scenebeing
viewed. However to correctlyestimatethemotion between
imageframesweneedto segmentthecorrespondencesinto
thosebelonging to the background and thoseon moving
objects.

As in thepreviousexample,weusetheKLT trackerto track
feature points over the sequence of 700 images. Subse-
quently thesequenceis decimatedto 35images.Weassume
thatthewarpingbetweentheframesis adequatelydescribed
by an affine transformation andfor every adjacentpair of
images,we compute the affinity matrix using the method
outlined in Sec.3. For therandomiseddecompositionalgo-



Figure3: Thebackground mosaicis computedaftermotion
segmentationbetweenadjacentframes. Theestimatedtrack
of oneof thesegmented vehiclesis superimposedin red.

rithm of Sec.3.1, we chosek � 4 (i.e. 4 correspondences
areselectedat a time) andwe use200samples

�
T � 200�

to estimatethe affinity matrix. One instanceof the esti-
matedaffinity matrixbetweencorrespondences is shown in
Fig. 2 andwe canobserve that theaffinity matrix correctly
reflectsthe relationship betweenthe large number of fea-
ture points that belongto the staticbackground (although
thecamerais moving) andthosethatbelongto objectsthat
aremoving. Oncethesegmentation of thefeaturepoints is
achievedusingspectralclustering ontheaffinity matrix,the
correctmotionbetweentheadjacentframescanbeinferred.
Moreoveroncewewarptheadjacent frames into acommon
referenceframe, the moving objects can be trivially seg-
mentedout sincethedifference in imageintensitieswould
behighfor themoving vehicles. Weuseasimplethreshold-
ing of theenergy differencebetweenthe imagesregistered
ontoa common referenceframe(i.e. mosaic)andusesim-
ple morphologicaloperations to compute the centreof the
blob corresponding to the moving vehicleswhich enables
us to locatethemoving objectson themosaic.Theresult-
ing representationis shown in Fig. 3. A mosaicis built out
of the images usedandgivesus a clearview of the back-
groundscene.Wealsoshow thevehiclesin thefirst andlast
frame andtheestimatedtrajectoryof oneof thevehicles is
superimposedin red.As canbeseen,ourmotionsegmenta-
tion schemecorrectly segmentsthefeaturepointsallowing
us to build accuratebackground mosaicsandalsoestimate
themotion trajectory of themoving objects.

5. Conclusions

In thispaperwehavedevelopedaprobabilisticmeasurefor
the motion similarity betweencorrespondingpoints. This
measurecanbecomputedfor any parametric modelandthe
resultingaffinity matrixallowsfor motionsegmentation us-
ing spectralclustering. We alsointroducea randomisedal-
gorithm for tensordecompositionthatallowsusto naturally
decomposea probability tensor into its two-dimensional
affinity matrix representation. This decompositionmethod
is applicableto any super-symmetric tensorandcanbeused
for other labelingproblemsaswell. Futurework will in-
cludeothermorecomplex parametricmodels,incorporation
of motionpriorsanda moreformal analysisof thedecom-
positionalgorithm for super-symmetrictensors.
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