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Abstract

The first contribution of this paper is a probabilistic ap-
proac for measuringnotionsimilarity for pointsequenes.
While mostmotionsegmenation algorithmsare basedon a
rankconstaint on the spaceof affine motiors, our method
is basedon spectal clusteringof a probalility measue for
motionsimilarity which can be appliedto any parametric
mockl. Theprobabilistic framevork allows for incorpaa-
tion of informativepriors for the noiseand camea motion
Similarly spatialandtempoal priors canalsobesubsumed
leadng to usefulsgmenationtechniques.Our secondton-
tributionis a tensordecompsitiontechnique enallesusto
infer motion affinity from higher dimensionh representa-
tions. Resultsare presentedn realimage sequenca

1. Introduction

During the pastdecadea large body of work hasclarified
our undestandingof the geonetry of imageformation [2]

which hasresultedin various structureand motion esti-
mationalgorithms. A basicassumptiorfor thesemethals
is that the image sequene constitutesa single motion

typicdly dueto a moving cameraobseving a rigid scene.
However, mostreal situationswould consistof sequenes
that contain objeds undergoing different motions. This
motivatesthe developmeri of motion segmentatio meth-
odsthat identifiesgroups of featues or objeds that have
the samemotion Most of these motion segmenation
methals have assumedhn affine cameraobsening featue

corresponéncesand perform a rankbasedfactorisation
([1, 9] andreferancestherein) While having theadventage
of treatingall datasimultaneasly, acomma limitation of

suchapprachesis that tracks have to either visible over
the entire sequenceor have to be “approximated using
rank criteria. Moreover an algebaic rankcriterion does
not allow for eitheranincomoration of informationabou

the cameramotionor the sgmentatio of otherparametic

mockls that are not affine (e.g. epipdar geonetry). Con-
sequetly our motivation is to develop a geneative mocel

thatallows for a prokabilistic intergretationof the motion
colerenceof features. Given measurmentsof the motion

“similarity” (or likelihoad) of tuplesof pointsin the form

of an affinity matrix %, spectralclusteringmethod allow

for a straightfoward segmenation of the data. We very
briefly statethe spectralclusterirg methal here,thereader
is referedto [10, 3] for details.Givena positive symmetric
matrix P, its normalisedLaplacian is D—%(D - P)D—%

whereD is diagoral with di = ¥ ; pij. The segmenation
is achieved by threshdding (with thresholdof zero), the
secondsmallesteigervectorof the normalisedLaplacian.

As will be developed in subsequet sections, using a
prababilistic framewvork allows for an intuitively satishc-
tory measue of motion similarity for a given paranetric
motion mockl. Sincewe canincormorateary paranetric
motion modelinto our scheme,it is vastly more genera
than one that assumesonly affine motiors. Moreover,
a prokabilistic frameavork allows for easyincorporation
of prior knowledge of the cameramotion, obsenation
noise etc. which increaseghe accurag of the metha.
While the spectralclustering methals are applicableto
tuples of featues, mary modds requie more feature
correspondeces. We addresghis prodem by introducing
an apprachto deconposinga tensorialrepresetation of
motionsimilarity (themultilinearcourterpartof the affinity
matrix) into an affinity matrix thatis efficiently compued
usingarandanisedalgoritim.

Section2 introducesanddevelopsour prokabilistic measure
for motionsggmentatio. This prokablisticmeasurdor the

affine mockel is describé in Sec.3 and Sec.3.1 descriles

the randmised decanposition of the probability tensor

Section4 descriles experimentalresultson real sequenes

and Sec. 5 provides someconcluding remarks. We are

unabbe to conside other paranetric models (epipolar

geonetry andspace-tine affine mocelsin particdar) in this

pape dueto spaceconstrairs.

1Theterm affinity matrix dendesa matrix of measuremetsof similar-
ity for clustaing and shouldnot be confuse with the term affine which
denotes a particular paranetric motion model.



2. Probabilistic Formulation

The motivation for our apprach can be bestillustrated
using a simple onedimensioml examge wherethe intu-
itive interpietation of the prabability measureis easiest
to see. In the following, for pedigogical purposes,we
adgt a simplerigid translationmodelon onedimensiol
points. Extensionto more compex mocels like affine
motion follow naturallyandwill betakenupin subsequen
sections.

2.1 A Generative Model

Correspndertesin thefirst andsecondmagearedenoted
x andx respectiely and are assumedo move accordng
to eitherof two translationmodels,t1 or to. The obsered
poirts in the secondmagearesubjectedo Gaussiamoise
of standad deviation 0. Thus,we havex’ = x+t+nwhere
t € {t1,t2} andthenoisetermn ~ N(0,0?). For measuring
the affinity of a pair of points,let thetuple of pointsbe x;
andxj, wheretranslationgt; andt; areequalif x; andx;
belong to the samemotion mocel. We dende the boolean
cordition thatx; andx; belongto the samemotion model
asx; || Xj. ThusP(x; || Xj) dendesthe probability that x;
andx; belangto thesamemotionmodel. Assumingagiven
translationt, we have for ith poirt n; = xi' — Xj —t which
interpretedprokabilistically gives
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sincethenoiseis assumedo beindepeidentandidentically
distributed. By substitutinghetermfor n; in EQnl wehave
therelatiorship
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where Ax denotes<' — x for notatioral corvenience. How-

ever sincewe neitherknow the valueof t nor needto esti-

mateit for our puposegwe areonly interestedn segmen-
tation of pointsfor now) we canintegrateit out by means
of the BayesTheoem, i.e. P(x; || xj) = JP(xi || x;|t)dt

implying that
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Theterm of interestin the exponentof the above equation
is (Ax; — )%+ (Ax; — t)? whichsimplifiedto
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Whenthistermis substitutedackinto theintegral in Eqn.2
andafterintegratirg outthetermt we have
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In the abore we have ngjlected some corstant terms
that have no significancefor our result but the intuitive
interpretationof theresultis clear For now, neglectingthe
effect of obsevation noise,we notethatin the casewhere
poirts x; andx; belongto the samemotion model,we have
Ax; — Axj = 0 andP(x; || Xj) = 1. In the casewherethe
two pointsbelongto differentmotion models,we notethat
the exponentialterm is a fundion of (tl—tz)2 and thus
the probability measureP(x; || x;) will be lower than 1.
Conseqantly theaffinity matrix built outof this probability
measureanbeusedto solve for motionsegmenation.

2.2 Prior for Motion Model

In the abose analysis, we have derived the probability
measureof the likelihoad that two points belongto the
samemotion model. In the processof integraing out
the translationterm t we have derived the Maximum
Likelihood Estimate (MLE) by beirng agnocstic abaut its
likelihodad, i.e. we have given equal weighta@ in the
integral to every possibletranslationvalue. However this
is notthe casein areal scenariovhereexternalconstraits
tell us that certain motiors are more likely than othes.
For exampe, for a moving vehcle we know the maximum
possiblespeedandalsoknow thatits more likely thatthe
vehcle is moving at its “averagé speedthanat higheror
lower values. This knowledgecan be easily incorporated
into our derivation in the form of a prior for the motion
P(t). Incomporatirg this prior into the integral of Eqn 2
will resultin a Maximum A Posteriori(MAP) estimate,
P(xi || xj) = [P(xi || xj[t)P(t)dt. If we have a Gaussian
prior, P(t) ~ N(l,0t?) thenthe integral canbe solved for
analyticdly. We shouldpoint out thatthis is not a severe
constrain since most well-behaed motion priors can be
easily expressedin the form of a mixture of Gaussians,
sayP(t) = ZxmN(Lk, 0k?) Wherem represets the mixing
proportion of eachGaussiarfunction N(p, o). It will
be notedthat dueto the linearity of the integral operateo,
sucha mixture of Gaussiansnodelwill still resultin an
analytic form for the integral. In general,we would like
to usethe MAP estimatewhenwe have someknowledge
of the form of the prior for the motion mockel. In the



absene of ary useful knowledge of the motion prior we

take recouse to the MLE anddo not usea prior. While

learring a meanimful prior from imagesequenesis very

usefd, it remainsbeyondthe scopeof this pape. Similarly

the useof spatialpriors is not dealtwith heredueto space
corstraints.

In this sectionwe have derived a measurefor the likeli-
hoad of a tuple of points moving accoding to the same
motion mocel. The influerce of the priors of noisein the
obsevations and priors for the motion is also described
The probability measurederived in the caseof the one-
dimersionaltranslationmocel easily carriesover to other
more comgex motion mocels aswill be describedn the
next section.

3. Affine Motion Model

In this sectionwe derive probability measuregor points
moving accoding to an affine motion model. Following
the pedaggic exanple of onedimensioml pointsin trans-
lation, we caneasilymodify the probability measureo that
of an affine motion model. If we denotepoint correspo-
dercesin two imagesasp and p', thenunderanaffine mo-
tionwehave p' = Ap+twhereAis a2 x 2 affinematrixand
t is atwo-dimersionaltranslationparameterUnderobser
vation noise themore generatelationskp isp’ = Ap+t-+n
whee n is the noiseterm. We assumen subsequeranal-
ysis that the noiseterm is Gaussiardistributed with zero
meani.e. n ~ N(0,Z,) whereZ, is a2 x 2 covatiancema-
trix. Rewriting therelationshign vectorform we have
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By collectingthe unknovn motionparaméersinto asingle
vedor a = [a11, a12,t, 821, azo, ty] We canrewrite Eqn.5 as

which can be compactly rewritten asp’ = Ma +n. Note
herethatp andM areknown quantitiesbasedon pointcor
respmdencs. Following Eqn.1, for P(p; || pj|a) we have
P(n) = e~2""Zn'n wheren canbe obtainedfrom Eqn.6,
i.e.n=p —Ma. Rewriting the noisetermswe have

T
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whereterms B,c and d are derived from the correspon-
denes andthe noisecovariance. The above derivation is
for the probability measurefor a single point. However
sincewe assumehatthenoiseis Gaussiamndiid, thenoise
termsare additive in the exponents. In otherwords,when
we considerthe joint probalility of two noisetermsfrom
poirts p; andp; thetermsB,c andd would be modifiedto
thearithmeticsumof theindividualterms,e.g.B = B +B;.
Thereademwill noticethatgiven this condtional prokabil-
ity we canderive the analytic probaility measureby in-
tegrating out the motion paraméers a, i.e. we have for
P(pi I pj) = S P(pi || pj|a)da, theform

[Pmillpilada= [etdeaediqa  (g)

The analytic form for this equatia is easily derived by
comgeting the squars in variablea in a mannersimilar
to thatin Eqn 3. However in contiastwith the translation
mockl sincethe affine motion model has6 unknown pa-
rametes, two correspadenesp; andp; arenot sufiicient
to solwe for the affine motion as they provide only four
constraits. An even greder constraintis that for the
measure¢o beaccurateve needa correctprior for theaffine
mockl sincewe areintegratirg over 6 dimensios. In the
absencef aknawn prior for the motionmodel,we usethe
following estimatorfor theaffinity betweersetsof points.

Givenasetof k-tuple (k > 4) correspnderceswe linearly
solve for theaffine motionmocdel andestimatehe probabil-
ity measureaccordng to the noisemodel,n ~ N(0,% ). If
all points in the k-tuple belorg to the samemotion model,
the residualerra will be low andthe prabability measure
will be high. The corverseis true for the casewherethe
poirts belorg to different motion mockls asthe linear es-
timatewill be poor An alternateway to interpiet this ap-
proachis the prabability measureghusderived is similar to
thatin Eqn.8 with astrongprior for theaffinemotionplaced
at 4, = a* wherea* is the linear affine estimateusingthe
k-tupleof points. Theresultantepresetationfor the prob-
ability measurewill be atensorof dimersionsk. However
thespectraklusterirg technigesarebasedntheaffinity of
tuplesof points. Thuswe requie anappopriatetechniqie
thatwill corvertak-dimensioml tensorialrepresentatioto



a two-dimersional prabability matrix. Recentwork in the
analysis of multilineardeconpositionshave extended stan-
dardlinearalgebaideaslik e the singularvaluedeconposi-
tion (SVD) andthe eigen-e&ecompmsition to highe dimen-
sionalrepiesentation$4, 5] and[7, 8] applytheseideasto
prablemsin computervision.

3.1 Decomposition of the Probability Tensor

In the following we provide a brief sketch of tensorbased
ideasthat are usedin our scheme the readeris refered
to [4, 8] for a detailedtreatment. In the caseof matrices
P, the singuar valuedecompsitionP = U;SU," provides
an orthagyonalisationof the row and columrs spacesin

matrices U; andU»,. For an N-dimersionaltensor®, the
“flattened matrix repesentatiorP y, canbe obtain by
varying theindex alongdimensiom while holdingall other
dimersionsfixed. Eachsuchinstancegivesa vecta which

is acolumnin P(,. Then-made productof atensor? and
amatrix U cannow bedefinedasfollows P x ,U = PmV.
Usingthisrepresetationwe canrewrite thematrix SVD as
P=U;SU," = Sx1U; x,U,. By extersion, the tensorial
decampositionis given by P = $x1U; x2Uz--+ xp Up,

whete S is known asthe coretensorandis the multilinear
eguvalentof thesingularvaluematrix. The modematrices
Un areobtaineél by anSVD of theflattenedmatrix P ,) and
settingUp, to theleft matrix of the SVD.

In our casefor k-tuplesof poirts, we have a probability
tensorrepreseted by ?, wherethe entry pj, .., is the
probability measue for the set of points indexed by
{i1,---,ik}. Herethek-dimersionaltensoiis of dimensims
N x N--- x N where N is the total numbe of points.
Moreover, we note that the probability measureis is
invariantto all index permuations 1t{iy, - -- ,ix} whereTt
is ary elementof the set of permuations of k indices.
For exanple, the affine motion prabability for points
{3,4,5,6},{3,5,6,4},{5,6,4,3} areall identical. In other
words, the probability tensor ? has a supersynmetric
structue whereall the k-mode spacesareidentical. Thus
the decanpositioncanbe obtainedby flatteningthe tensor
alorg ary dimension We also notethat for our purposes
we are not interestedin the orthagond represetation U
alore but wantto decomjpsethe tensorinto a form where
V is the desiredaffinity matrix suchthatthe modeproduct
of V with itself alongall dimensiors resultsin therequred
tensori.e. P =V x1V x2V--- xxV. Note that this
decampositionis valid only for the casewherethe tensor
P is supersymmetric, the proof of which is beyond the
scopeof this paper In geneal, we note that the affinity
matrix V is of size N x N and is derived from the left
spaceof the flattenedmatrix P, i.e. V.= P, PT(n) . The

flattenedmatrix P, is of size N x Nk=1 thus the large

nunber of columrs is a greatcompuationalload. But the
problem s further simplified if we considerthe following
repesentation. We write matrix P, = [C1,C2,---,Cq]
wherec; dendestheith column Now V canbewritten as
SiCi ¢i'. This suggestshatinsteadof compuing the entire
tensorand flatteningit, we canprovide an apprximation
to the affinity matrix V by consideing the sum y;cic',
wherethe columrs are a small subsetof the entire set of
columsof theflattened-epresentatiorP ). Thisprocedure
can be summaised in the following algotithm which is
bothefficient andalsodoesnotrequirelarge-scalememay
allocationfor thetensorsincecomputationsaredorein situ.

Let ® = {1,2,--- ,N} be the setof indicesfor N corre-
sponencesand let k be the dimersion of the tensor?,

i.e. k-tuplesareusedto compute the prabability measure.
Also we derote the probability measurefor the k-tuples

{i17 i27 T Ik} asp{i17i27“'7ik}

Randomised Algorithm for Decomposition of
Probability Tensor

SetV to beanN x N matrix of zeros.

for T trialsdo

e Setv to anN-dimensioml columnvecta of zeros

e Randonty select(k— 1) indices
I ={i1,iz, "+~ ,ik-1)} from R

e Vie R andi ¢ T compitev(i) = py 1
e UpdateV «+ V+w'

The resulting matrix V is the desired affinity matrix
measurig the similarity of motion betweenall pairs of
poirts. An alternateinterpietation of this algorithm is
that the entry V(i, j) is given by ¥, pyi nPyj, iy where
inI=0andjn I =0, wherel aresetsof (k— 1)-tuples
drawvn from K. This canbeseento be a particularform of
mauginalisationof the multidimersional probability tensor
P into atwo-dimersionalaffinity matrix.

4. Experimental Results

In this sectionwe preseh resultson two imagesequenes
that illustrate the ability of our motion segmenation
scheme.In the computationalperceptio of scenedynam-
ics [6], a preliminary stepis to segmentthe sceneinto
coheently moving “objects”. Subseqgantanalysisis used
to labeltheseobjectvarious as“active” or “passive” agents
or stationaryobjectsetc. from which the perceptia is in-
ferred. In Fig. 1 weillustratethis prablemusinga sequence
wherea moving handpicksup asodacan.Framesrom the



(a) Moving Hand

(b) Segmentdion

(c) After Pickup

Figure 1: (a) shawvs the moving handat the beginning of the sequene, (c) shows the endof the sequenceafterthe canhas
beenpickedup. (b) shawvs the correct segmertation obtainedover the entiresequenceNote thatwhile the canandthe hand
aremoving coheratly afterthepickup thefactthatonly the handwasmoving before thepickupof the canis reflectedn the

correctseggmenationachieved.

Figure 2: The affinity matrix betweenadjacenimagesof
the aerial sequene is estimatedusing the randanisedal-
gorithm for tensordecanposition(T = 200samples).The
featuresbelongng to thestaticbaclgrourd canbecorrectly
inferredfrom this affinity matrix (thelarge block).

beginning andend of the sequencare shavn in Fig. 1(a)
and(c) respectidy. If we wereto segmer thesceneusing
the first few imagesof the sequencethe moving hand
would be segmerted out of the restof the scene.Similarly
just usingthe last few imageswould resultin concludng
that both the hand and the sodacan constitutea single
object asthey move colerently Thusit is important to
usetheentiresequencéo arrive atthecorrectsegmenation.

In our experimentwe track featue points (usingthe KLT
tracker) over the entire sequene of 84 imagesand use
the correspaderces from every fifth image resultingin
17 setsof correspodertes. For motion sggmentatio we
use a simple two-dimensional translationmotion mockl
(with the o of noise setto 1 pixel) and compue the

affinity matrix betweenadjacen frames. Subsequety the
segmenation resultsof eachimage pair are compued by
spectralclusterirg and the information combned to infer
all possibleunigte labels. The resultingsegmenation is
shavn in Fig. 1(b) and can be seento shav the corred
segmenation of the hand the sodacan and the rest of
the sceneinto indgopendeh motion segmerts. The single
instanceof a point on the table being groyped alongwith
the hard is a result of a tracking error wherethe tracker
confusesa moving shadev with a point on the hard and
geneatesa falsetrack.

In Fig. 3 weiillustratethe useof our affine motionsegmen-
tation schemeon a long aerial sequene. The sequence
consistof abridgewheretwo vehiclesmoveindepadently
andthe cameratracksthemfor over 700 frames. It must
be notedthatin suchalong sequenesthetracksof feature
poirts will bevisible only within alimited range of images
as they disapmar from the field of view as the camera
movesahead In order to interpret the informationin the
sequene it is usefulto build a mosaicof the scenebeing
viewed However to correctlyestimatethe motion between
imageframeswe needto sggmentthe correspondecesinto
thosebelondng to the baclground and thoseon moving
objects.

As in thepreviousexanple,we usetheKLT trackerto track
featue points over the sequene of 700 images. Subse-
guenly thesequencés decimatedo 35imagesWe assume
thatthewarpingbetweertheframess adeqatelydescribed
by an affine transfornation andfor every adjacentpair of
images,we compue the affinity matrix usingthe method
outlined in Sec.3. For therandaniseddeconpositionalgo-



Figure 3: Thebackgound mosaicds computedaftermotion
segmentationbetweeradjacenframes. Theestimatedrack
of oneof thesegmentel vehiclesis superimpsedin red.

rithm of Sec.3.1, we chosek = 4 (i.e. 4 correspnderces
areselectedat a time) andwe use200 sampleg T = 200)
to estimatethe affinity matrix. One instanceof the esti-
matedaffinity matrix betweercorrespadencsis shavn in
Fig. 2 andwe canobsenre thatthe affinity matrix correctly
reflectsthe relationslip betweenthe large numter of fea-
ture pointsthat belongto the static baclgrourd (althowgh
thecamerds moving) andthosethatbelongto objectsthat
aremoving. Oncethe seggmentatio of the featurepoirts is
achievedusingspectraklusterirg ontheaffinity matrix, the
correctmotionbetweertheadjacenframescanbeinferred.
Moreoveroncewe warptheadjacehframesinto acomnon
refelenceframe, the moving objects can be trivially seg-
mented out sincethe differerce in imageintensitieswould
behighfor themoving vehicles. We usea simplethreshdd-
ing of the enepgy differencebetweerthe imagesregistered
ontoa comnon referexceframe(i.e. mosaic)andusesim-
ple morplological operatims to compute the centreof the
blob correspading to the moving vehicleswhich enables
usto locatethe moving objectson the mosaic. The result-
ing represetationis shovn in Fig. 3. A mosaicis built out
of the images usedand givesus a clearview of the back-
groundsceneWe alsoshav thevehiclesin thefirst andlast
frame andthe estimatedrajectoryof oneof the vehidesis
supeimposedn red. As canbeseenpurmotionsegmenta-
tion schemecorrectly sggmentsthe featurepointsallowing
usto build accuratebackgourd mosaicsandalsoestimate
themotion trajectoy of themoving objects.

5. Conclusions

In this papemwe have developeda probabilisticmeasurdor

the motion similarity betweencorrespndingpoints. This
measureanbecompuedfor any parametic modelandthe
resultingaffinity matrix allows for motionsegmentatio us-
ing spectraklustering We alsointroducea randanisedal-

gorithm for tensordecanpositionthatallows usto naturally
decanposea probability tensorinto its two-dimersional
affinity matrix represetation. This decanpositionmethod
is applicableto any supersymnetrictensorandcanbeused
for otherlabeling prodemsaswell. Futurework will in-

cludeothermorecomple« paranetricmodelsjncorporation
of motionpriorsanda moreformd analysisof the decan-

positionalgorithm for supersynmetrictensors.
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