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Abstract

A 3D reconstruction of retinal blood vessel trees using two
views of fundus images is presented. The problem ad-
dresses: 1) The recovery of camera-eye model parame-
ters by an self-calibration method. The camera parameters
are found via the solution of simplified Kruppa equations,
based on correspondences captured by hand from four dif-
ferent views. 2) The extraction of blood vessels and skele-
tons from two fundus images. 3) The match of correspon-
dence points of the two skeleton trees. The trees are previ-
ously labelled during the analysis of 2D binary images. 4)
The lineal triangulation of matched correspondence points,
and the surface modeling using diameter measurements ex-
tracted from the 2D binary images. Examples from 3D
skeletons and tree surfaces reconstructed models are shown.

1. Introduction

Quantitative assessment of retinal vasculature provides use-
ful clinical information to assist in the diagnosis of various
diseases. The detection and measurement of retinal vascu-
lature can be used to quantify the severity of disease and the
progression of therapy. Retinal blood vessel tree geometry,
topology and vessel tracking have been widely studied by
means of digital image processing mainly using retinal im-
ages which are also known as fundus images [7, 8]. How-
ever, the majority of these works have been carried out in
2D fundus images, like those shown in Figure 1 (a,c). A
first effort to obtain a 3D view of fundus images has been
developed by Deguchi, et.al. [2, 3]. Their work is focused
on the reconstruction and display of 3D fundus patterns us-
ing branching vessel points correspondences between im-
ages for two and multiple views. As far as we are aware it
has not been an attempt on extract and represent 3D models
of retinal blood vessel trees particularly.

Photogrammetry analysis of features in human ocular
fundus images is affected by various sources of error, for
example aberrations of the fundus camera and the eye op-
tics. The magnification in a fundus image is equal to the fo-
cal length of the fundus camera divided by the focal length
of the eye. This formula can only occur under different
ametropic conditions and changes in the camera position

with respect to the subject’s eye. These differences in mag-
nification between one fundus image and another has been
pointed out by Arnold et. al. [1]. As a result, it is not pos-
sible to make a direct comparisons between measurements
on different subjects. Another type of distortion arises from
projecting the near spherical shape of the fundus onto a pla-
nar imaging device. Consequently, 3D reconstruction of
retinal blood vessel trees up to a metric projection is a great
challenge.

In this paper we present a first approximation to the so-
lution of this problem. 3D reconstruction of fundus vascu-
lature conveys the following questions: 1) the estimation of
the intrinsic camera parameters (calibration matrix K) for
each “fundus camera-eye ball” system, 2) the extraction of
blood vessel trees from 2D fundus images, 3) the match of
the correspondences of vessel skeleton tree points between
images, 4) the computation of the fundamental matrix (F )
from the correspondences, 5) the computation the camera
projection matrices (P , P ′) from fundamental matrix, 6) for
each correspondence point, the computation of a point in the
space via triangulation and finally, 7) the construction of a
3D model of the blood vessel tree surface.

The rest of the paper is organised as follows: section 2
describes the techniques that we follow to estimate K and
F matrices; section 3(a,c) deals with blood vessel extrac-
tion and analysis of binary images from 2D fundus images.
Section 4 details the computation of the projection matrices
and the triangulation procedure to get 3D views of vessel
tree skeletons, section 5 depicts the first approach to surface
reconstruction, and finally sections 6 and 7 present some
experimental results and conclusions.

2. Camera calibration

The calibration task we are dealing with, is particularly dif-
ficult since we ignore the intrinsic and extrinsic parameters
of the fundus camera used to capture the images as well
as those parameters of the optical system formed by the
cornea, lens and vitreous humor of the eye-ball being ex-
amined. Thus, we need to use a self-calibration technique
which uses a number of specific correspondences of branch-
ing and crossing blood vessel points. These points are taken
from a set of retinal images captured from different views



of the same eye-ball.
The method we applied to camera self-calibration is

based on the work reported by [6] which employs a simpli-
fication of the Kruppa equations. The method relies solely
on the singular value decomposition (SVD) of the funda-
mental matrix that reduces the number of equations to be
solved. It also avoids to recover noise-sensitive quantities
such as epipoles, since its accurate estimation is difficult in
the presence of noise and/or degenerate motions. In the next
sections we will outline the algorithm (for details see [6]).

2.1. Compute the calibration matrix (K)
Kruppa equations can be considered as an epipolar match-
ing constraint for the projections of quadratics or conics [4].
The image conics are identical when the images are cap-
tured with a camera with fixed intrinsic parameters, which is
the case of any pair of views taken with the fundus camera.
Let ω be the projection of the absolute conic. The matching
constraint can be expressed in the following form:

Fω∗F T = [e′]×ω∗[e′]× (1)

where F is the fundamental matrix of the two views, e′ is
the second epipole. The equality is up to scale (ω∗ = ω−1,
dual image of the absolute conic) and [e′]× is the skew-
symmetric matrix associated with the cross-product of e′.
Expression 1 is called the Kruppa equations.

Using singular value decomposition (SVD) of matrix
F = UDV T , expression 1 is equivalent to:
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where r, s are the eigenvalues of the matrix FF T ; u1, u2, u3

are the column vectors of U ; v1, v2, v3 are the column vec-
tors of V , and U , V are two orthogonal matrices. The aim
is to find ω∗.

The camera calibration matrix, K, is a 3× 3 matrix hav-
ing the well-known form:

K =





αu −αucotθ u0

0 αv/sinθ v0
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 (3)

where αu and αv correspond to the focal distances in pixels
along the axes of the image, θ is the angle between the two
image axes and (u0, v0) are the coordinates of the principal
point.

ω∗ = KKT (4)

therefore the matrix K is extracted from ω∗ by computing
KT employing the Cholesky decomposition of ω−1, then it
is transposed and finally inverted to yield K.

We summarise the algorithm to find ω∗ in two steps:
1. Finding initial solution. A good approximation for

the initial solution is to assume that principal point coin-
cides with the center of image and that skew angle θ is

equal to π
2 . The two focal lengths αu, αv, are initialised ran-

domly. Assuming that we have M images, that have been
acquired with constant camera intrinsic parameters, a total
of N ≤ M(M−1)

2 fundamental matrices can be defined.
2. Non-Linear Optimisation. Let πij(SF , ω∗) denote

the differences of ratios ij and σ2
ij(SF , ω∗) the variance

from equation 2. Matrix ω∗ is computed as the solution
of the non-linear least squares problem:
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where SF is a vector form by parameters from the SVD of
F . The minimization of equation 5 is done using classical
Levenberg-Marquardt algorithm [10].

2.2. Compute the fundamental matrix (F)

The fundamental matrix is defined by the equation

x′T Fx = 0 (6)

for any pair of matching points xi ↔ x′

i. From a set of n
point matches, we obtain a set of linear equations as:

Af = 0 (7)

where A is composed by the matches xi ↔ x′

i. The method
to find F is based on the normalised 8-point algorithm [4]
that can be summarised as follows:

1. Normalisation: Transform the image coordinates ac-
cording to x̂i = Txi and x̂′

i = T ′x′

i, where T and T ′ are
normalised transformations consisting of a translation and
scaling.

To find the fundamental matrix F̂ ′ of matches x̂i ↔ x̂′

i:
2. Linear solution: Determine F̂ as the solution of

equation 7 from the SVD of Â = UDV T .
3. Constraint enforcement: Force matrix F̂ to have

rank 2 by replacing F̂ by F̂ ′ such that detF̂ ′ = 0.
4. Denormalisation: Set F = T ′T F̂ ′T . Matrix F is

the fundamental matrix corresponding to the original data
xi ↔ x′

i.

3. Blood vessel extraction

Blood vessels are segmented using a previously described
algorithm based on multi-scale analysis [7]. Two geometri-
cal features based upon the first and the second derivative of
the intensity image, maximum gradient and principal curva-
ture, are obtained at different scales by means of Gaussian
derivative operators. A multiple pass region growing proce-
dure is used which progressively segments the blood vessels
using the feature information together with spatial informa-
tion about the 8-neighbouring pixels. Figure 1(a) and (c)
shows two scanned negative of a retinal photographs and



Figure 1(b) and (d) their segmented binary images respec-
tively, where the optic disc region is on the top centre, ves-
sels are tracked from this area outwards.

(a) Original I1 (b) Segmented B1

(c) Original I2 (d) Segmented B2

Figure 1: (a) and (c) two views, from the same eye-ball, of
scanned negatives and (b) and (d) their respective segmented im-
ages.

3.1. Analysis of binary images

A semi-automatic method to measure and quantify geomet-
rical and topological properties of continuous vascular trees
in clinical fundus images was developed on a previous work
[8]. Measurements are made from segmented binary im-
ages. The skeletons of the segmented trees are produced
by a thinning technique, branching and crossing points are
identified and segments of the trees are labelled and stored
as a chain code. The operator selects the tree to be measured
and decides if it is an arterial or venous tree. An automatic
process then measures the lengths, areas and angles of the
individual segments of the tree. Geometrical data such as
diameter, length, branching angle, and the connectivity in-
formation between segments from continuous retinal vessel
trees are tabulated. A number of geometrical properties and
topological indices are derived. Figure 2 shows three dif-
ferent vessel trees extracted from Figure 1(b). Note that in
these images (Figure 2) only vessel segments are extracted,

(a) (b) (c)

Figure 2: (a)-(c) Three different vessel trees extracted from bi-
nary image shown in Figure 1(b).

branching areas are ignore. From each tree, an ASCII table
of measurements is generated.

4. 3D skeleton reconstruction

Suppose that a set of image correspondences xi ↔ x′

i are
given, such as the skeleton points. It is assumed that these
correspondences come from a set of 3D points Xi, which
are unknown. The reconstruction task is to find the camera
projection matrices P and P ′, as well as the 3D points Xi

such that
xi = PXi

x′

i = P ′Xi for all i
(8)

The reconstruction process consist on: 1) compute the fun-
damental matrix F from the correspondences, 2) compute
the camera projection matrices, P and P ′, from fundamen-
tal matrix, and 3) for each point correspondence xi ↔ x′

i

compute the point in the space that projects these two image
points.

4.1. Compute the camera projection matrices.

Consider a camera matrix decomposed as P = K[R|t],
where R is the rotation matrix and t is the translation vec-
tor. The essential matrix (E) is the fundamental matrix cor-
responding to the pair of normalised cameras. The relation-
ship between the fundamental matrix and essential matrix is
given by:

E = K ′T FK (9)

The camera projection matrices may be retrieved from E up
to scale and a four-fold ambiguity. Thus, we can follow the
next 3 step algorithm [5]:

1. Assume that the reference frame is centered in the first
camera matrix as P = [I |0] in order to compute the second
camera matrix P ′.

2. Factor E into the product SR of a skew-symmetric
matrix and a rotation matrix, by the SVD of E.

3. Since St = 0, it follows that t = U(0, 0, 1)T =
u3. However, the sign of E and consequently t cannot be



determined. Thus, for a given essential matrix there are four
possible choices of the camera P ′ based on two possible
choices of R and two possible signs of t. Testing with a
single point to determine if it is in front of both cameras is
sufficient to decide between the four different solutions for
the camera matrix P ′.

4.2. Compute the 3D points by triangulation.

The 3D points Xi are calculated by performing a linear
triangulation using the inhomogeneous method [4]. Equa-
tions 8 can be combined into a form AX = 0, which is an
equation linear in X , with

A =









xp3T − p1T

yp3T − p2T

x′p′3T − p′1T

y′p′3T − p′2T









(10)

where piT are the rows of P . Setting X = (X, Y, Z, 1)T ,
the solution of AX = 0, can be found by a least-squares
method.

5. Surface modelling.

Since the 3D reconstruction algorithm described in sec-
tion 4 is applied only to the skeleton points of each blood
vessel tree, we did not recover 3D information from the ac-
tual shape of its surface. We considered a fair assumption
to describe the blood vessel segment cross-section as a cir-
cle in order to generate a 3D surface. Each blood vessel
segment was modelled by a generalised cylinder [9] which
axis is the 3D skeleton estimated earlier. The radius of each
circular cross-section is kept constant for each vessel seg-
ment, and it is calculated from measures obtained from the
2D fundus images [8]. The cylinders are scaled using the
camera internal parameters from matrix K.

6. Experimental results

A set of fundus images were taken from the same subject
and same eye ball. Retinal photographs were taken using a
fundal camera with 30◦ field of view (Kowa FX-50R, Kowa,
Tokyo, Japan). Ilford FP4 (125 ASA) photographic film
was used. Photographic negatives were digitised using a
Nikon 35mm film scanner (LS-100, Nikon, Tokyo, Japan).
Digitised images were 720× 577 pixels in size. For the pur-
pose of these experiments, 4 different views were taken for
the calibration process and one different pair for the recon-
struction example from this data set.

6.1. Camera calibration matrix (K)

Four different views of the fundus negative images were
chosen for calibration purposes. 16 matched points were

(a) Image 1 (b) Image 2

(c) Image 3 (d) Image 4

Figure 3: (a)-(d) Fundus negative images chosen for calibration
purposes. The 16 hand selected matched points are marked in
white.

selected by hand in each of the four images. Branching
points, vessel crossing points and points around the optic
disc were selected as references. Figure 3 shows these four
images with the points selected marked on white.

Since we have 4 images, that have been acquired with
constant camera intrinsic parameters a total of 6 fundamen-
tal matrices can be defined. We assumed the initialisation
parameters described in section 2.1. Fundamental matrices
for each par of images are computed using the 8-points al-
gorithm described in section 2.2. From equations 4 and 5
we obtained the calibration matrix equal to:

K =





424.8281 1.0000 470.9406
0 969.9713 128.0000
0 0 1.0000





6.2. 3D skeleton reconstruction

One pair of images was selected and segmented from our
data set of photographs as shown in Figure 1 (a,c) [7].
Skeletons of separated blood vessel trees, as those shown
in Figure 2, are marked and measured. Measurements are
kept in an ASCII table per tree [8].

Since continuous blood vessel tree skeletons are marked
they can be tracked along the tree. Using these tables, the



(a) T2, I1 (b) T2, I2 (c) T2, match

Figure 4: (a) Tree #2 from image I1, (b) Tree # 2 from image I2,
and (c) the matched tree skeletons.

correspondences (xi ↔ x′

i) of a continuous tree skeletons
from the two pair of images are extracted automatically.
Figures 4(a) and (b) show the same tree extracted from im-
ages Figure 1(b) and (d) respectively. Figure 4(c) shows
the corresponding matched tree skeletons. Note that a small
branch at the bottom-right of the tree shown in Figure 4(a) is
missing in the image of the same eye shown in Figure 4(b).
This small branch is of course automatically discarded in
the correspondences like it is shown in Figure 4(c).

A set of correspondences xi ↔ x′

i of only one tree is
needed in order to compute the two projection matrices P
and P ′, as described in section 4.1, with the use of the cam-
era calibration matrix K calculated in section 6.1.

Once the projection matrices are obtained, the triangu-
lation of the rest of correspondences per each skeleton tree
extracted from the pair of images is done. A total of 5 trees
were reconstructed for this example. Correspondences were
interpolated using splines in order to obtain a smoother ver-
sion of the reconstructed skeletons. Figure 5 shows different
3D views of the blood vessel skeletons extracted and plotted
on the same coordinate system.

Note that optic disc is at the bottom of the coordinate sys-
tem therefore tree roots are in that area. Figure 5(a) shows
the curvature of the eye ball, this view corresponds to a 30◦

filed of view of the fundus camera. The other three views
(b)-(d) are just rotated versions of the former.

6.3. Surface visualisation

Using the surface model described in section 5 and based
on the 3D skeleton points and vessel segment diameter, the
surface of each vessel segment is generated. Each tree is
visualised using Geomview1, a 3D viewing program. Each
tree is built as a set of disconnected segments such as those
shown in Figure 2(a), each of them with a defined spatial
position and orientation.

1http://www.geomview.org/

(a) View 1 (b) View 2

(c) View 3 (d) View 4

Figure 5: (a)-(d) Four different 3D views of skeleton trees recon-
struction, extracted from pair of images shown in Figure 1.

Each vessel segment surface is described by a mesh of
square patches wrapped in one direction so that it forms a
cylinder. The mesh vertices for each segment are calculated
as follows: for each 3D skeleton point, the set that describes
the generalised cylinder axis, a polygon or cross–section is
considered. Each polygon is centered in the 3D axis posi-
tion in space, and its orientation is set so that the vector nor-
mal to the polygon center is tangent to the skeleton axis at
that point. The coordinates of the polygon vertices are used
as the mesh vertices. Each vertex is connected to the two
neighbouring vertices in the same cross–section and to the
corresponding vertices in the neighbouring cross-sections.
The vertices of the cross-section at the extreme points of
each segment are only connected to one neighbouring cross-
section. Four 3D views of different vessel trees are shown
in Figure 6.

Figure 6(a) corresponds to the surface reconstruction of
the tree shown in Figure 4. Figure 6(b) is the same tree from
(a) but rotated to show the eye ball curvature. Figures 6(c)
and (d) show the examples of two other reconstructed trees.
Note that in this case optic disc is at the top of the coordinate
system, and blood vessel segments coming from that area
are wider than those from the tips of the tree.

7. Conclusions

We have presented a 3D retinal blood vessel tree model, re-
constructed from two different views of 2D fundus images
through: self-calibration procedure, 3D projection, triangu-



(a) Tree 2 (b) Tree 2

(c) Tree 4 (d) Tree 4

Figure 6: (a)-(d) Four different 3D views of blood vessel trees,
extracted from pair of images shown in Figure 1. Diameter mea-
sure of each vessel segment is obtained from the 2D binary image.

lation and surface meshing.

One of the main differences that we found from Deguchi,
et.al. [2, 3] work compare with ours, is that they do not used
self-calibration procedure, instead they employ two parallel
planes in front of the fundus camera and use a transparent
acrylic plate with a grid in order to calibrate the camera.
Along with it, they project the correspondences and fun-
dus pattern into a spherical surface which means that even
a crossing point belongs to the same surface. It can be seen
from Figure 5(a) that all vessel trees follow the same eye-
ball curvature but do not belong exactly to the same spher-
ical surface, which seems more realistic. Finally, we only
reconstruct blood vessel trees rather than fundus patterns.

There are various questions that still have to be addressed
in order to use this model for mensurable applications. First
of all the selection of the 16 correspondence points used in
the calibration process can be calculated automatically; at
the present we can detect them automatically but a registra-
tion method have to be implemented [4]. Radial distortions
are not taken into account. Since trees are extracted by in-
dividual vessel segments separately, branching regions are
not considered in the mesh of the current model. Also it
is necessary to perform a full error analysis of the geomet-
ric methods described in this article in order to evaluate the
robustness of the proposed approach; this includes a valida-
tion of the self–calibration method and the factorization of
the essential matrix. Nevertheless our results suggest that,

after clearing up these issues, the 3D model obtained could
be used for realistic applications.

Representation of vascular trees with 3D models could
have many advantages on opthalmology: it could give a
more realistic view for physicians for clinic and education
purposes, it could permit to extend all geometrical and topo-
logical properties already measured in 2D images [8] to a
3D model, and it could allow to have a 3D geometry which
could be used for blood flow simulations.
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