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Abstract

A new approach to fitting coupled geometric objects, such
as concentric circles, is presented. The objects can be
coupled via common Grassmannian coefficients or through
a correlation constraint on their coefficients. The im-
plicit partitioning and partial block diagonal structure of
the design matrix enables an efficient orthogonal residual-
ization based on a generalized Eckart-Young-Mirsky ma-
trix approximation. The residualization prior to eigen- or
singular-value decomposition improves the numerical effi-
ciency and makes the result invariant to the residuals of the
independent portions.

Analysis is performed for the generalized case of cou-
pled implicit equations and examples of parallel lines, con-
centric circles and coupled conics are given. Furthermore,
numerical tests and applications in image processing are
presented.

1. Introduction

The primary aim of metric vision is to gain quantitive in-
formation on the position, orientation and dimensions of
objects from images. In general points of interest are ex-
tracted from one or more images and segmented prior to
fitting. The points obtained are perturbed by noise or uncer-
tainty in the images. Given the noisy points of interest it is
then necessary to fit geometric objects.

Automatic inspection commonly requires the measure-
ment of multiple objects simultaneously, whereby there
may be coupling between the geometric objects, e.g. par-
allel lines, concentric circles, common orientation, etc. The
coupling may be both spatial and temporal. Temporal cou-
pling occurs, for example, when a mechanical component is
being machined. From one image to the next some features
change but many remain unchanged, i.e. these features are
common to multiple images and represent a coupling for the
geometric fitting procedure.

Much attention has been paid to the task of fitting indi-
vidual objects, such as conics [1,2], and quadrics. Very little
literature, however, is available on fitting multiple geomet-

ric objects which are coupled in some explicit form. Con-
centric circles and their projective concentric ellipses have
been used by Kim et. al. [3] to calibrate cameras, and have
also been used in remote sensing to determine dimensions
of archeological sites [4]. However, only specific solutions
to the tasks at hand were presented, and in the past no gen-
eralization has been performed.

This paper presents a new generalized method of fitting
coupled geometric objects. The types of objects being con-
sidered are defined by their dual-Grassmannian coordinates
and the specific object by its Grassmannian coefficients.
Two mechanisms are proposed to implement the coupling:

1. Common-dual-Grassmannian coordinates and coeffi-
cients: The design matrix and coefficient vector are
partitioned so as to reflect the coefficients which are
common to both objects. The resulting scatter matrix,
with its implicit partitioning, is solved in a two step
procedure using theSchur complement.

2. Quadratic constrained total least squares: The total
least square reduction is performed with the addition
of a quadratic constraint on the coefficient vector. This
enables the implementation of quadratic coupling be-
tween the coefficients of two objects.

Both mechanisms are implemented simultaneously by the
method presented. Furthermore, a method of orthogonal
residualization based on generalized Eckart-Young-Mirsky
matrix approximation is presented which improves the nu-
merical performance of the fitting procedures. Numerical
tests and results from selected image processing tasks are
presented.

2. Geometric background

Geometric objects can be represented as the product of a de-
sign vectord and a coefficient vectorv, furthermore, there
may be a constraint on the coefficients. For Example, a hy-



perbola can be represented as,[
x2 xy y2 x y 1

] [
a b c d e f

]T = 0

subject to b2 − 4ac > 0. (1)

The design vector defines the general family of curves being
considered, in this case a conic. The quadratic constraint on
the coefficients determines the specific type of curve within
the family, e.g. in (1) the hyperbolæ are defined, which
belong to the family of conics. The coefficients define the
specific example of the type of curve.

Given a set ofn points the design matrixD and coeffi-
cient vectorv can be defined,

D ,

x2
1 x1y1 y2

1 x1 y1 1
...

...
...

...
...

...
x2

n xnyn y2
n xn yn 1

 , (2)

v ,
[
a b c d e f

]T
. (3)

The task of constrained fitting can now be formulated as,

vT DT D v = min
‖v‖6=0

subject to vT Cv = α (4)

whereC is the constraint matrix. Bookstein [5] showed in a
seminal work that constrained problems of this sort can be
solved using generalized eigenvectors. Differentiating (4)
with respect tov, gives the normal equations which need to
be solved simultaneously,

DT D v = 0 (5)

C v = 0 (6)

given ‖v‖ 6= 0.

Now using a Lagrange multiplierλ,

DT D v − λC v = 0 subject to vT C v = α (7)

defining the scatter matrixS , DT D and rearranging (7),

{S− λC} v = 0. (8)

The solutions are the eigenvectors ofS with respect to
C, which is a generalized eigenvector problem. Pre-
multiplying byC−1,{

C−1 S− λI
}

v = 0 (9)

and defininĝS , C−1 S the equation becomes,{
Ŝ− λI

}
v = 0. (10)

This is a standard problem of finding the eigenvalues and
eigenvectors of̂S. Such constrained minimization tech-
niques have been successfully applied to the direct and spe-
cific fitting of hyperbolæ and ellipses [6].

3. Coupled geometric objects

This paper proposes two mechanisms to couple the geomet-
ric objects:

1. the objects have common Grassmannian coefficients,
and/or

2. there is a quadratic constraint relating the coefficients
of the two objects.

Both of these mechanisms are implemented simultaneously
in the following formulation: consider two geometric ob-
jects O1 and O2 represented by implicit homogeneous
equations,

O1 ,
[
dc d1

] [
vc v1

]T = 0 (11)

O2 ,
[
dc d2

] [
vc v2

]T = 0. (12)

The design and coefficient vectors have been partitioned
such thatdc defines that portion of the dual-Grassmannian
space common to both objects, andvc contains the coef-
ficients which the objects have in common. The common
coefficients must not necessarily apply to a common design
polynomial. The vectorsd1,v1 and d2,v2 are the inde-
pendent design and coefficient vectors associated with the
objectsO1 andO2 respectively.

The design and coefficient vectors can now be concate-
nated to define an extended Grassmannian space, i.e.

d ,
[
dc d1 d2

]
(13)

v ,
[
vc v1 v2

]T
(14)

Once again the constrained fitting task can be formulated
as:

vT DT D v = min
‖v‖6=0

subject to vT C v = α (15)

Whereby, there is an implicit partitioning of the design ma-
trix,

D ,

[
D1,c D1 0
D2,c 0 D2

]
(16)

the scatter matrixS , DT D,

S =

 DT
1,cD1,c + DT

2,cD2,c DT
1,cD1 DT

2,cD2

DT
1 D1,c DT

1 D1 0
DT

2 D2,c 0 DT
2 D2

 (17)

and also of the constraint matrix,

C ,

Cc,c Cc,1 Cc,2

Cc,1 C1,1 C1,2

Cc,2 C1,2 C2,2

 . (18)



This formulation enables the simultaneous implementation
of common coefficients and of the constraint:

vT
c Cc,c vc

+vT
1 C1,1 v1

+vT
2 C2,2 v2

+2vT
c Cc,1 v1

+2vT
c Cc,2 v2

+2vT
1 C1,2 v2 = ±α.

(19)

Consequently, a constraint can be placed on all convolutions
of the coefficient vectorsvc, v1 andv2.

4. Orthogonal residualization

Considering the design matrix from (16) once again.

D ,

[
D1,c D1 0
D2,c 0 D2

]
=

[
Dc D1,2

]
, (20)

a brute force method to find a solution forv is to apply
singular value decomposition toD and select the right sin-
gular vector with the smallest singular value. However, this
is both numerically inefficient and is not invariant to Eu-
clidean transformations of the data.

The implicit partitioning of the matrixD and its partial
block diagonal structure can be used to advantage in an or-
thogonal residualization. The magnitudes of the orthogonal
projection ofDc ontoD1,2 is given by

M = D+
1,2 Dc, (21)

whereD+
1,2 ,

{
DT

1,2 D1,2

}−1
DT

1,2 is the pseudo-inverse of
D1,2. The orthogonal residualD⊥c , i.e., the portion ofDc

not predicted byD1,2, can be calculated as:

D⊥c = Dc − D1,2 M. (22)

This residualization corresponds to a generalized Eckart-
Young-Mirsky matrix approximation [7].

The right singular-vector ofD⊥c with the smallest
singular-value is the solution for the vectorvc. The remain-
ing coefficients are determined by back substitution,

v1,2 = −
{
D+

1,2 Dc

}
vc = −M vc. (23)

Taking advantage of the block diagonal nature ofD1,2, the
projection decomposes into two independent projections,
i.e.,

M1 = D+
1 D1,c, (24)

M2 = D+
2 D2,c, (25)

D⊥c =
[
D⊥1,c

D⊥2,c

]
=

[
D1,c − D1 M1

D2,c − D2 M2

]
, (26)

and the back-substitution becomes,

v1 = −M1 vc and v2 = −M2 vc. (27)

The resulting fitting algorithm can be summarized as fol-
lows:

1. Perform independent orthogonal residualization of
each data set onto the common portion of the design
matrix.

2. Concatenate the orthogonalized common portions to
form D⊥c

3. Solve the fitting onD⊥c to determine the common co-
efficients1 vc e.g. by applying singular value decom-
position.

4. Perform independent back-substitution for each object
to determine the remaining coefficients.

Assuming a total ofn points are available, the vectorvc

has the lengthmc; the vectorsv1, andv2, have the lengths
m1 andm2 respectively. The matricesD andD⊥c then have
the dimensionality,

D ⇒ n× (mc + m1 + m2), (28)

D⊥c ⇒ n×mc (29)

respectively. Consequently, residualization has reduced the
effort required to calculate the singular value decomposi-
tion, while improving the robustness of the result. Further-
more, determining the common coefficientsvc becomes in-
variant with respect to the residuals ofv1 and v2. The
method has been derived for two objects, however, it is gen-
erally applicable to any number of coupled objects.

5. Quadratic constrained fit

A solution to the problem of total least squares with a
quadratic constraint has been presented by Gander [8].
However, he assumed that the constraint is of the form
vT KT K v, which can only implement a magnitude con-
straint on the solution vectors. An alternative solution based
on generalized eigenvectors is required if an orientational
constraint is required, i.e., the matrix square root ofC has
complex entries.

In general the constraint does not apply to all coefficients
andC is correspondingly sparse. Furthermore,C may not
have an inverse. Nevertheless, the problem can be solved
by an appropriate partitioning of the matrices. This pa-
per proposes to first solve the system of equations for the

1It may be desirable to apply a quadratic constraint to the solution of
D⊥c , this for example would be the case when fitting hyperbolæ with com-
mon coefficients.



constrained coefficients, and then to determine the remain-
ing coefficients via back-substitution. In many fitting prob-
lems, common coefficients can implement the constraint re-
quired and an additional constraint matrix need not be im-
plemented, e.g. when fitting concentric circles.

5.1. Partitioned generalized eigenvectors
The implicit partitioning of partially constrained least
square fitting was recognized by Halir et. al. [9]. Here their
work is extended to include coupled geometric objects. It
is important to note thatC is in general sparse, since the
constraint is only applied to some portion of the coefficient
vector.

A numerically efficient and more robust solution to this
problem is to repartition the coefficient vectorv into its con-
strainedva and unconstrained portionsvb resulting from
Equation (19). The corresponding partitioning of the scat-
ter and constraint matrices must also be performed, such
that, {[

Sa Sc

ST
c Sb

]
− λ

[
Ca 0
0 0

]} [
va

vb

]
= 0. (30)

This can now be expanded and separated into a constrained
and an unconstrained equation,

Sa va + Sc vb − λ Ca = 0 (31)

ST
c va + Sb vb = 0. (32)

Solving (32) forvb and back-substituting into (31) yields,

vb = −S−1
b ST

c va (33){
Sa − ScS

−1
b ST

c

}
va − λ Ca va = 0. (34)

DefiningS̃a , Sa−ScS
−1
b ST

c , the Schur complement ofSb

in S we have, {
S̃a − λ Ca

}
va = 0. (35)

In this caseCa is of full rank and the generalized eigenvec-
tors and eigenvalues of (35) are found, the eigenvector with
the smallest magnitude eigenvalue is selected as the solu-
tion for va andvb is determined by back-substitution into
(33).

6. Numerical tests and applications

6.1. Fitting parallel lines
Consider the task of fitting two parallel lines,l1 andl2, to

two sets of data points1Pi =
[
1xi 1yi 1

]T
and2Pi =[

2xi 2yi 1
]T

each havingm andn points respectively.
The two line equations can be defined as,

d1 1x + d2 1y + n1 = 0 (36)

d1 2x + d2 2y + n2 = 0 (37)

whereby, the orientation of the lines are common (d1 and
d2) and normal distances to the origin (n1 andn2) are inde-
pendent. The corresponding complete design matrix is,

D v =



1x1 1y1 1 0
...

...
...

...
1xm 1ym 1 0
2x1 2y1 0 1

...
...

...
...

2xn 2yn 0 1




d1

d2

n1

n2

 . (38)

The orthogonal residualization delivers the projection mag-
nitudes,

1p0 =
[
1x

1y

]
and 2p0 =

[
2x

2y

]
, (39)

which are the coordinates of the centroids of the clouds of
points. The two lines must pass through their respective
centroids. Subtracting the coordinates of the respective cen-
troid for each cloud of points centers the data at the origin
(i.e. mean free data). Defining the mean free data as:

j x̃i , jxi − jx, (40)

j ỹi , jyi − jy, (41)

for i = 1 . . . n (orm) ,

the design matrix is now redefined on the mean free data,

D̃ vc =



1x̃1 1ỹ1

...
...

1x̃m 1ỹm

2x̃1 2ỹ1

...
...

2x̃n 2ỹn


[

d1

d2

]
. (42)

Applying singular value decomposition2 (or eigenvector
analysis) and selecting the right singular-vector with the
smallest singular value yields the vector of common coef-
ficientsvc = [d1 d2]. Back substitution can now be per-
formed to determine the remaining coefficients

n1 = −vc 1p0 = −1x d1 − 1y d2 (43)

n2 = −vc 2p0 = −2x d1 − 2y d2. (44)

The two lines have the coordinates

l1 =
[
vc n1

]
=

[
d1 d2 n1

]
(45)

l2 =
[
vc n2

]
=

[
d1 d2 n2

]
. (46)

2It should be noted that the matrix̃D is of dimension(m + n) × 2
whereasD is of dimension(m + n) × 4, reducing the numerical effort
required to perform the singular value decomposition.



Figure 1: Example of fitting two parallel lines in image pro-
cessing.

Figure 2: Concentric circles correspond to parallel hyper-
planes in their dual-Grassmannian space.

6.2. Fitting concentric circles

A circle can be defined on the dual-Grassmannian coordi-
nates and coefficients:

[
x2 + y2 x y 1

] [
c1 c2 c3 c4

]T = 0. (47)

whereby the relationships to the centre point and radius are:

x0 = − c2

2c1
, y0 = − c3

2c1
, and r2 =

c4

2c1
− x2

0 − y2
0 ,

(48)
assumingc1 6= 0. Consider two concentric circlesC1 =
[x0, y0, r1] andC2 = [x0, y0, r2], which can be coupled
by definingc1, c2 andc3 to be common and implementing
independentc4’s. This corresponds to two parallel planes in
the dual-Grassmannian space. The corresponding complete

design matrix is,

D v =



1x
2
1 + 1y

2
1 1x1 1y1 1 0

...
...

...
...

...
1x

2
m + 1y

2
m 1xm 1ym 1 0

2x
2
1 + 2y

2
1 2x1 2y1 0 1

...
...

...
...

...
2x

2
n + 2y

2
n 2xn 2yn 0 1




c1

c2

c3

n1

n2

 .

(49)
The orthogonal residualization delivers,

1p0 =

 1x2 + 1y2

1x

1y

 and 2p0 =

 2x2 + 2y2

2x

2y

 .

(50)

These are the coordinates of the centroid of the clouds of
points in the hyperspace. Defining,

j x̃2y2
i , jx

2
i + jy

2
i − jx2 + jy2 (51)

j x̃i , jxi − jx (52)

j ỹi , jyi − jy (53)

for i = 1 . . . n (orm) ,

The design matrix is now redefined on the mean free data,

D̃ vc =



1x̃2y2
1 1x̃1 1ỹ1

...
...

...

1x̃2y2
m 1x̃m 1ỹm

2x̃2y2
1 2x̃1 2ỹ1

...
...

...

2x̃2y2
n 2x̃n 2ỹn


 c1

c2

c3

 . (54)

Applying singular value decomposition and selecting the
right singular-vector with the smallest singular value yields
the vector of common coefficientsvc = [c1, c2, c3]. Back-
substitution can now be performed to determine the remain-
ing coefficients

n1 = −vc 1p0 = −1x2 + 1y2 c1 − 1x c2 − 1y c3 (55)

n2 = −vc 2p0 = −2x2 + 2y2 c1 − 2x c2 − 2y c3. (56)

The coordinates for the two circles are:

C1 =
[
vc n1

]
=

[
c1 c2 c3 n1

]
and (57)

C2 =
[
vc n2

]
=

[
c1 c2 c3 n2

]
. (58)

6.3. Coupled conics
The last example presented here is the case of two coupled
conics: which, are coupled in their quadratic portion, i.e.



Figure 3: Fitting two concentric circles, in this application
the volume of a ruffian is determined automatically via dig-
ital image processing.

Figure 4: Two conics coupled so that they have the same
quadratic components

they are forced to have the same orientation, however, their
centre points and radius are independent. The common de-
sign portion is, [

x2 xy y2
]

(59)

and the corresponding coefficientsa, b andc are subject to
the constraintb2 − 4ac = 1 (this constraint forces the conic
fit to be a hyperbola [6]), Figure (4) shows two hyperbolæ
with asymptotes of identical direction.

7. Conclusions

A new method of fitting coupled geometric objects has been
presented. The analysis shows that any implicit equations
with common coefficients or with constraints on the cor-
relations of their coefficients can be fitted using this tech-
nique. It is a generalization of quadratic constrained total
least squares to coupled fitting.

The method has been explicitly demonstrated for parallel
lines, concentric circles and coupled conics.
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