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Abstract

Particle filtering is being investigated extensively due to its
important feature of target tracking based on nonlinear and
non-Gaussian model. It tracks a trajectory with a known
model at a given time. It means that particle filter tracks
an arbitrary trajectory only if the time instant when a tra-
jectory switches from one model to another model isknown
apriori. Because of this reason particle filter is not able
to track any arbitrary trajectory where a transition instant
from one model to another model is not known. For real
world application, a trajectory is always random in nature
and may follow more than one model. In this paper we pro-
pose a novel method, which overcomes both the above prob-
lems. In the proposed method a multiple model based ap-
proach is used along with the particle filtering, which auto-
mates the model selection process for tracking an arbitrary
trajectory. In the proposed approach, there is no need to
have apriori information about the exact model that a tar-
get may follow. For data association, the uncertainty about
the origin of an observation is overcome by using a centroid
of measurements to evaluate weights for particles as well as
to calculate the likelihood of a model.

1. Introduction

The standard Kalman filter gives an optimal estimate with
a linear and Gaussian model assumption. For nonlinear
case, one typically uses the extended Kalman filter. The
unscented Kalman filter [17] is being used to preserve the
nonlinearity of the model by properly chosen sigma points.
It also assumes the state to be Gaussian distributed. In re-
cent times, for nonlinear and non-Gaussian models, particle
filtering has been proposed as an alternative to the extended
Kalman filter [12, 8, 10, 11]. Comparison of particle filter
with other nonlinear filters can be found in [1, 20]. Parti-
cle filtering has been extended to multiple target tracking
and different methods have been proposed for this prob-
lem [6, 4, 18, 5]. In [6] a stochastic simulation Bayesian
method has been proposed for multitarget tracking but sim-
ulation and results are depicted for single target only. In
[4] the data association problem is treated as an incomplete

data problem [7]. It treats an observation to track assign-
ment as missing data and Gibbs sampler method is used to
estimate the assignment probability. Particles are sampled
from the probability density function (pdf) representing the
combined state of all the targets in [4]. In multiple target
scenario the number of state parameters varies from target
to target. Moreover, the computational complexity of this
method increases exponentially as number of measurements
increase, and number of targets to be tracked increase. Es-
timating the joint probability distribution of the state of all
targets makes the problem intractable in practice. Particle
filter, of course, needs the knowledge of the model to track
a target; but more importantly, it needs to know the time in-
stant when a trajectory switches from one model to another
model. Now, if the target movement is random, then the
trajectory formed by the target is arbitrary and there is no
apriori knowledge about which model to use at a given time
and when to switch. In such a situation, a particle filter suf-
fers from the degeneracy problem, and the pdf of the state
collapses. To track an arbitrary trajectory, it is incumbent to
use a multiple model based approach, namely, interacting
multiple model (IMM) filtering.

In this paper we propose a novel method that works with
multiple nonlinear or non-Gaussian state space models to
track arbitrary trajectories.It is important to note that the
proposed approach does not require any apriori informa-
tion about the exact models which targets may follow for
particle filtering. We performed the simulations where tra-
jectories are generated using B-spline function and tracked
successfully using the proposed method.In the proposed
method an IMM [21, 19] based approach is used along with
particle filtering, which automates the model selection pro-
cess. To incorporate multiple models for a given target the
likelihood of an observation given a target state is modelled
as a mixture pdf. Another problem with multiple target
tracking in the presence of clutter is data association. Var-
ious data association methods like nearest neighbor (NN),
joint probabilistic data association filter (JPDA) and multi-
ple hypothesis tracking (MHT) have been described in the
literature [22]. The performance of NN method degrades
in the presence of dense clutter, whereas JPDA and MHT



methods are computationally expensive. So in the proposed
method probabilistic MHT (PMHT) based approach is used
for data association. PMHT algorithm [14, 13] has been
proposed to avoid the uncertainty about the origin of a mea-
surement. It uses a centroid of measurements to evaluate
state vector of a target. In the proposed approach, we have
used a centroid of the measurements to evaluate likelihood
of the model, which is required for mixing state vectors
from different models in IMM based approach. The cen-
troid is also used to update the particles.

2. Multiple Model based Particle Filtering

It is important to note that the proposed method does not
need to have any apriori information about the exact dy-
namic models which target may follow at a given time. This
approach is completely different compared to conventional
particle filtering. The conventional particle filters needs
the knowledge of the model to track a target.In this sec-
tion, the problem is described in the multimodel framework
to track both maneuvering and non-maneuvering targets.
For each model, the pdf is approximated by a set of sam-
ples, called particles. Each particle is assigned a weight,
known as importance weight. For every model, particle
weights [2, 15, 3] are evaluated at each time instant indepen-
dently. If the trajectory does not follow any model at a given
time instant its pdf may collapse or all importance weights
may have negligible value for respective particles. At this
time instant, particles are initialized using mix state vector
given by the IMM filtering method and hence, it is possible
to follow an arbitrary trajectory. IMM filtering mixes the
state vector from different models using model probabili-
ties. When a trajectory switches from one model to another,
particle weights have marginal values if it matches a model
and hence, it is reflected in model probability. Mix state
vector takes care of the likelihood of a model for a given tra-
jectory. Model probability is calculated using the centroid
of observations. Inclusion of IMM based approach allows
us to track an arbitrary trajectory with different models. For
observation to track association, PMHT based approach is
used which is described in [14].

For particle filter, a set of weighted particles are drawn
from the posterior pdf of the state. The pdf can be approxi-
mated using discrete sums in place of integrals as follows:

p(xt|Y1:t) =
1
N

N∑
i=1

δxi
t
(dxt) (1)

whereY1:t = {y1, y2, . . . , yt} is a set of measurements up
to time t andyt is a measurement available at timet. xi

t

(1 ≤ i ≤ N) representsith sample drawn from pdf at time
t. Here,N is the total number of samples used to represent

pdf andδxi
t

is the Dirac delta function. Based on this ap-
proximation, any moment can be evaluated [9]. It can be
written as

E(gt(xt)) =
∫

gt(xt)p(xt|Y1:t)dxt ≈ 1
N

∑N
i=1 gt(xi

t)
(2)

The particlesxi
t are assumed to be independent and identi-

cally distributed. AsN → ∞ an estimation converges to
its true value [15]. Generally, it is difficult to sample from
the posterior pdf. But it is easy to sample from the proposal
distribution functionq(xt|Y1:t). There are various method
for sampling from the proposal function. Sequential im-
portance sampling (SIS) is one of these techniques. Each
particle is weighted by an importance weight and it is given
by,

wt(xt) = p(yt|xt)p(xt|Y1:t−1)
q(xt|Y1:t)

= p(yt|xt)p(xt|xt−1)
q(xt|Y1:t)

(3)
The proposal function should be chosen to minimize the
variance of the importance weights [2]. The most popular
choice for proposal function [12] is

q(xt|xt−1, yt) = p(xt|xt−1) (4)

The problem with the above choice is that the most recent
measurement is not incorporated but it is very easy to im-
plement. This simplifies the evaluation of weightswt(xt)
and written as

wt(xt) = p(yt|xt) (5)

and it can be shown that expectation in (2) can be written
as,

E(gt(xt)) =
N∑

i=1

gt(xi
t)w̃t(xi

t) (6)

where w̃i
t = wi

t∑N

j=1
wj

t

is normalized weight. The major

problem with the above technique is that the variance of the
importance weights increases over time. It results into de-
generacy phenomenon. To overcome this degeneracy prob-
lem a resampling is performed to eliminate the particles
with low weights and multiply particles with high weights.
There are number of resampling methods: sampling impor-
tance resampling (SIR), residual resampling and minimum
variance sampling. In our proposed method, residual re-
sampling method is used because it is computationally less
expensive and the variance is smaller than that given by SIR
method.

For our algorithm,Y and X denote the observation
process and the state process respectively.Y t is a set
of all observation set for timet ≥ 1, where t is cur-
rent time. Y (t) and X(t) represent the realization of
observation process and state process at timet, respec-
tively. At time t, a vector of measurements is received,



Y (t) = (yt(1), . . . .yt(mt)), where mt represents the
number of measurements received. Similarly,X(t) =
(xt(1), . . . , xt(Nt)). Here,Nt is the total number of tar-
gets at time instantt and xt(s) (1 ≤ s ≤ Nt) repre-
sents the combined state estimate for targets. xm

t (s) is the
state estimate of targets due to modelm at timet, where
1 ≤ m ≤ M . M is the total number of models used to track
a particular target.

To overcome the uncertainty about the measurement ori-
gin, an assignment processK is used andKt is a set of all
its realization for timet ≥ 1. Its realization at timet is
denoted by, K(t) = (kt(1), . . . , kt(mt)) whereK(t) is
an assignment vector and each element of vectorkt(j) = s
indicates that targets produces measurementj at time t.
The measurement to track assignment probabilityΠ at time
t is given by, Π(t) = (πt(1), . . . , πt(Nt)). Here,πt(s) in-
dicates the probability that a measurement originates from
the targets. This probability is independent of the measure-
ment, i.e.,

πt(s) = p(kt(j) = s), ∀j = 1, . . . ,mt (7)

It is assumed that one measurement originates from one tar-
get or clutter, which leads to the following constraint on an
assignment probabilities,

∑Nt

s=1 πt(s) = 1. Each element
of assignment vectorK(t) is assumed to be independent
of each other. The sequence of the steps for the proposed
method are described in a Figure 1. With this problem for-
mulation, the proposed algorithm, automated model selec-
tion based tracking using particle filter is described as fol-
lows:

1. Initialize particles for each modelm (1 ≤ m ≤ M),
by drawing samplesxi (i = 1, . . . , N) from the
prior pm(x0) for each targets (1 ≤ s ≤ Nt).
Initialize model probability (for exampleM = 2 then)

µ = {0.5 0.5}
and transition probability

[ξ] =
[

0.998 0.002
0.002 0.998

]
.

Here,Nt represents the total number of targets at time
t.

2. For timet = 1, 2, . . .

(a) Update particle weights:
For each targets and for each filter modelm,
initialize the assignment probabilitiesπt(s) and
repeat the following steps (i)-(v) during each it-
eration, till error converges to a fixed threshold
value, i.e. ‖x̂m(p−1)(s) − x̂m(p)(s)‖ < ε. Ini-
tially x̂m = xm wherexm is the predicted state
vector for the modelm at previous time.

i. Evaluate the likelihood for an observation
falling inside the validation region formed

Figure 1: Flow chart for the proposed method

using the predicted state vector with respect
to the modelm, i.e. pm(yt(j)|x̂m(p)). Here,
x

m(p)
t represents the state vector of a model

m at iterationp.

ii. Calculate the assignment weights for each
measurementj = 1, . . . ,mt, and for each
targeti = 1, . . . , Nt

ẑ
(p+1)
t,j (i) =

π(p)(i)p(yt(j)|x̂(p)(i))∑Nt

n=1 π(p)(n)p(yt(j)|x̂(p)(n))
(8)

wherep(yt(j)|x̂(p)(n)) is a mixture proba-
bility of an observation given the combined
state estimatex of the targetn, and it is
given by

p(yt(j)|x̂(p)(n)) =
M∑

m=1

µmpm(yt(j)|x̂m(p))

Here,µm is a model probability which is de-
scribed later.

iii. Calculate the assignment probabilities for



targets

π
(p+1)
t (s) =

1
mt

mt∑
j=1

ẑ
(p+1)
t,j (s) (9)

iv. Calculate the centroid of measurements

ycm
t (s) =

1

mtπ
(p+1)
t (s)

mt∑
j=1

ẑ
(p+1)
t,j (s)yt(j)

(10)
Using a centroidycm

t evaluate the likelihood
of model for targets

Ls(m)1 = pm(ycm
t |xm

t )

v. Using an observation centroid and the state
vector of a model particles weights are cal-
culated

ŵi
t = π

(p+1)
t (s)pm(ycm

t |x̂im(p)
t )

If
∑N

j=1 ŵj
t equals zero then go to next

model otherwise obtain the estimation
E(x̂m

t ) for the modelm for next iteration
using (6).

vi. Particle weights are updated using an ob-
servation centroid and the state vector of a
model (̂xm = xm) which is evaluated at the
end of iteration by,

wi
t = πt(s)pm(ycm

t |xim
t )

• Normalize the weights.
• Perform Residual Resampling to ob-

tainN particles distributed according to
pm(xm

t |Y1:t).
• Obtain an estimationE(xm

t ) for the
modelm (in our case mean of a state)
using (2).

(b) Propagate particles: For each targets (1 ≤ s ≤
Nt),

i. Update the model probabilitym =
1, . . . ,M :

µm
t =

µm
t|t−1L

m∑
i µi

t|t−1L
i

whereµm
t|t−1 =

∑M
i=1 ξimµi

t−1

If Lm is negligible value (as it is calculated
using the centroid only), initialize it with
equal probability value with an assumption
that the centroid has equal likelihood with
each modelm.

1Note: Likelihood of a model is calculated during first iteration only
for given model and target.

ii. Combined the state update for a targets:

xt(s) =
M∑

m=1

xm
t|tµ

m
t

iii. Mix state initialization for a modelm:
x0m

s =
∑M

i=1 xi
t|tµ

i|m

whereµi|m = ξimµi
t/µm

t+1|t and µm
t+1|t =∑M

i=1 ξimµi
t

If
∑N

j=1 wj
t equals zero for a modelm then

initialize the particles with mix statex0m
s

otherwise go to next step.
iv. Predict particles:

For each modelm(1 ≤ m ≤ M); draw a
process noise samplevi

t from a pdf p(vt)
and propagate particlexi by

xi
t+1 = f(xi

t) + vi
t (1 ≤ i ≤ N)

v. Obtain the predicted stateE(xm
t+1) for a

modelm using (2).
vi. Combined the state predictionxt+1(s) for a

targets.

3. Simulation Results

Synthetic IR images were generated using real time temper-
ature data[16]. For simulation, the generated frame size is
1024 × 256 and very high target movement of±20 pixels
per frame. Maneuvering trajectories are generated using B-
Spline function. It is important to note that these generated
trajectories do not follow any specific model. In our simula-
tions, we have used constant acceleration (CA) and Singers’
maneuver model (SMM) for IMM. For all trajectories, fil-
ters are initialized using positions of the targets in the first
two frames. For our simulations, the number of particles
used to represent the target state pdf is set to 200. Figure 2
depicts the result of tracking using our proposed algorithm
for ir44 clip with 0.01% clutter level. In the clip two targets
are very closely spaced. Similar results for ir49 and ir50
clips with 0.03% clutter are shown in figures 3 and 4 re-
spectively. In these figures true trajectories are represented
by solid line and predicted trajectories are depicted by dot-
ted line. In the figures clutter is represented using white dot.
0.03% clutter level represents the number of noisy pixels in
an image frame. It gives on an average one clutter inside
the validation gate. The model probability plots for the tra-
jectories 1 and 2 for ir50 clip with 0.03% clutter level are
shown in Figures 5-(a) and 5-(b) respectively. Table A de-
picts mean prediction error in position for each trajectory
in different clips without clutter and with clutter. The key
point in the proposed method is that during tracking the time
instant when transition from one model to another model
takes place is not known and is random in nature, and there



Figure 2: Tracked trajectories at frame number 57 - ir44 clip (0.01% clutter)

Figure 3: Tracked trajectories at frame number 48 - ir49 clip (0.03% clutter)

Figure 4: Tracked trajectories at frame number 44 - ir50 clip (0.03% clutter)

(a) (b)

Figure 5: Model Probability plot for target 1 (a) and for target 2 (b) in ir50 clip with 0.03% clutter

is no apriori information about the model that target obeys.
From our extensive simulations, we have also noted that the

application of a single model, either CA or SMM, with par-
ticle filtering for tracking fails.



Table A: Mean Prediction Error in Position.

Traj. without clutter with 0.03% clutter
ir44 clip

1 0.7797 1.3119
2 0.7265 1.8121

ir49 clip
1 0.8568 0.9441
2 1.0127 1.0073

ir50 clip
1 0.6755 0.9609
2 0.6286 1.7737

4. Conclusion

From simulation results it is concluded that in absence of
any apriori information about the exact dynamic models
which targets may follow at a given time, our proposed
method is able to track multiple arbitrary target trajectories
in the presence of dense clutter. Only two filters, namely,
CA and SMM filters were used in IMM mode to track ran-
dom movement of targets.
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