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Abstract A similar solution has been proposed by Daoudi and Mz
tusiak [3]. This approach was included in MPEG-7 standal
Animportant problemin accessing and retrieving visual [6]. Each maximum represents the convexity or the conca
information is to provide efficient similarity machining in ity of the contour.
large databases. In this paper we propose partial retrieval
by the shape similarity using Curvature Scale Space and
an effective indexing using metric treesand a Bayesian ap-
proach. Each shape is partitioned into token attributes. To-
kens are organized in a tree structure called M-tree. We
focus on the study of the partial search ef ciency.

It was shown in [8] and [3] that the CSS representatio
has some properties as:
1. The CSS representation is invariant under the similari
group (the composition of a translation, a rotation, and
scale factor).
2. Completeness: This property ensures that two contot
will have the same shape if and only if all their CSS ar:
equal.
3. Stability gives robustness under small distortions caus:
by quantization, noise.
The visual information retrieval (VIR) systems are con- 4 Simplicity and real time computation: This property

cerned with efficient storage and record retrieval. Recently, js very important in database applications. However, n
several systems combine heterogeneous attributes to iMingexing schema was proposed.

prove discrimination and classification. These systems use

color, texture and shape features for image queries. The

shape can be used to represent local image information. In In this paper we propose retrieval by the shape similarit
this case, the problem is complicated because a shape dod#sing in CSS and an effective indexing using metric tree
not have a mathematical definition that exactly matchesEach shape is partitioned into tokens attributes. Tokens ¢
what the user feels as a shape. This concept is not typi-organized in a tree structure callbtitree[2].

cally present in the spirit of Fhe person tempting to send We present a new algorithm of partial shape indexing
arequest. The well-known distances measures Commonlywhich uses theM-tree structure combined with curvature

used in mathematics are not suitable to represent a shapgCale space. We propose also to combine this partial sea
similarity as perceived by humans in reality. method with a bayesian approach
The shape similarity based on local descriptors and ef- '

fective indexing has been proposed by S. Berreti et al. [1].  This paper is organized in the following way. Section 2
Each contour is represented by a set of token (partition of describes the way of representing a curve as a set of pe
contour). Each token is represented by two features, the annamed tokens by using curvature scale space descript
gle and the orientation. Two shapes are considered similaflCSS). In Section 3 we present the shape and Token d
if they share tokens with similar curvature and orientation tances used. Section 4 present how to combine the she
according to a distance measure. Tokens are organized adescription and the distance proposed with the tree stri
M-tree Mehrota and Gary [7] have developed a retrieval ture namedM-tree Section 5 describe a probabilistic ap-
technique known as Feature Index-Based Similar Shape Reproach combined to the M-tree partial search. In sectic
trieval. Boundary features are organized as kdb-tree. 6, we present some experimental results. A comparati
In [8], maximum of curvature scale space (CSS) as new analysis between thigl-tree and R-treestructure for shape
shape representation for planar curves has been used. retrieval is also carried out.

1. Introduction



2. Curvature scale space (CSS) description 3. Token and shape distance

An important problem in computer vision is the repre- In order to compare the index based on CSS, tt
sentation of shape. This applies both to the features ex-geodesic distance has been used by Eberly [4]. Given tv
tracted from image and to the components of object models.points (1, 01) and (2, o2), with u; < ug, their distanceD
We describe the representation of image curygsvhich can be defined in the following way:
correspond to the contours of objects, as they appear in the

image, this is useful for matching and recognition task. D((uy,01), (ug,02)) = log (02 (1+ 17(«:01)2) )
The curvey is parameterized by the arc-length param- 91 (14+y/1-(p01)?—oL)

eter. The smoothing curve, at multiple scales is done where

by using low-pass Gaussian filter, applied to the original 9r

boundary. Inflexion points of this curve at each scale are v = 3

corresponding to the Curvature Scale Space (CSS) descrip- Vot —aB)” + L2(L2 +2(0t + 03))

tOI’ [3] L: ||U1 —u2||,
The result of this process can be representethimr) L is the euclidean distance.

plane as a binary image called CSS image of the curve. For

everyu we have a certain curve which in turn, has some  To calculate distance between two tokens we have to c:

curvature zero crossing points. Asincreases, the curve cylate the distances between there relative Peaks. We p

becomes smoother and the number of zeros crossings depose to calculate the distance between two peaks belong

creases. to two different CSS by using a set points uniformly dis:
The curvature extrema and zeros are often used as breakributed on the two peaks, with step of 10.

points for segmenting the curve into sections correspondingThe distance between two peaRsandP; is defined by the

to shape primitives. The zeros of curvature are points fynctiond:

of inflection between positive and negative curvatures.

Simply the breaking of every zero of curvature provides the d(P;, P;) = Z D ((up, op) (g, 04))
simplest primitives, namely convex and concave sections. (up,0,) € P;
. - . (ug,04) € P;
Figure (1) shows an original boundary, and its CSS,
which is composed of a set of sub-curves called Péaks With: p = (n * step) n = 0... maz;/step
The X andY” axis respectively represent the normalized  andg = (n + step) n =0... maz; | step
arc length(u) and the standard deviatiom); For each maz; : the max number points d?,

u, we represented the values of the various arc length

) ] ) max; . the max number points df;
corresponding to the various zero crossing.

Given two shapesl and B, the similarity measurement

Each Contour is decomposed into parts called tokens,S. between them is defined as the sum of distantbs-
figure (1), using CSS. Each token is delimited by two in- tween their relative tokens. This measurement is not nece

flexion points. We notice that each token is corresponding Sary a metric.
to one Peak of CSS, figure (1). Each pe&k (describes a

corresponding region of the curve. 4. Shape indexing using CSS ani¥i-tree

LT S - We propose to structure the peaks corresponding to t

A o : CSS of each shape in a tree structure knowd dsee"Met-
T v i : ric Tree” [1][2]. The M-tree structure supposes the use of
I = b ' a metric distance between the components "tokens” of tt
U Cot w0 e tree. This tree structure stores the set of peaks of each C
e ) ol w b on the basis of their relative distances, and that in order
| " ‘ i Hals [ avoid the computation of some distances on the search pi

T ¢ 2 7 . X .

/ . Vi & cess. In this method we propose to index shape using all t

o oz oa s s 1 u iNnformation contained on the CSS, we define a similarit
measure using trees.

Figure 1. Parts shape with CSS descriptor Each shape is decomposed into a set of tokens usi

CSS, figure (1). The tree structuve Treeorganizes tokens

as hierarchical set of clusters [2], figure (3).

v



Entries in leaf nodes of the tree contain sets of couples
(u,0) corresponding to each token. Figure (2) shows the
organization of the tokens of figure (1) into Ehtreestruc-
ture. Clusters size is equal to 3.

Each node entry has the following format:

Entry(t;) = [ti, ptr(T(t:)), (L), d(ti, P(t:))]

Where:

t;. is the feature vector of the indexed token if the node
is a leaf, the Token identifier otherwise.

Example: for a given Tokety:
If ty is in leaf node:
to = ((U1701)7 (u2702)7 CRR) (Un,O'n)),
else ty = 0, (token identifier ofy).

Pitr(T(t;)): is a pointer to the root of the sub-trég&t;),
which includes alk; such that their distancg is less then
the covering radius(¢;): Vt; € T(t;), d(t;,t;) < r(t;).

In the leaf nodegptr(.) is replaced with the identifier of
the shape to which the Token belongs.

Distancesi(t;, P(t;)) andr(t;) are precomputed so that

the number of accessed nodes and the number of distances § Il
computations are reduced at search time. Given a query

tokent, and a range, a range query selects all the database
tokenst;, such thatd(t;, t,) < r.

Triangle inequality is used to prune a sub-tree from a
search path. In fact, we can easily proof these two proper-
ties: [2]

Property -1-

if d(ti,tq) >7r+ T(ti)
then d(tj,tq) >r vV tj S T(tl)
Property -2-

it | d(P(t:),tg) — d(ti, P(t:)) [> 7 +r(ti),

then d(t;,ty) > r +7(t:).

Since traversing tree is from root to leaf nodes, for an
entryt,. at a given level:
d(P(t,),t,): was already been computed in previous stages
when traversing tree.
d(t., P(t,)): is stored in the node corresponding:to
Indeed, if condition of property 2 is verified, it is possible
to prune the sub-tre€(¢,.) without having to compute any
new distance at all.

5 Probabilistic approach for partial search

In the following, each contour of a query image is de-
noted byQ, and the set of model images in our database by
I = I,,,, with m being the number of model images.
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Figure 2. M-tree corresponding to figure (1)
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Figure 3. Parts shape clustering with CSS and M-tree

Each contoud (either a query or model image) is charac:
terized by a CSS descript6r(I) = P; with P; being peaks
of CSS andP the number of peaks of the CSS relative tc
the image.

Given a query imagé), we want to find similar model
images, i.e. the model with the highest probability.

Since use of CSS as shape descriptor allows to retrie
the parts of shape, figure (3), we use a Bayesian voting &
proach based on parts appearance. Thus, given a scene |



the goal is to identify the model candidate which most likely

images of marine creatures. Each image shows one distil

accounts for the presence of this scene part. To achieve thispecies on uniform background. Each image is process

goal, we adopt a Bayesian framework where the measure oin order to recover the boundary contour.

discriminatory power of part for a model is defined in terms
of posterior probability [9].

An index i
associated to each contour. This index is composed of a
of couples, which is uniformly distributed on each peak o

We assign that the prior probability to parts of the same the CSS related to the image. The final phase of indexir
model are based on their relative visual relevance calculatectonsists of the construction of tid-tree corresponding to

according to the distance between shape and parts.

Let P(Ix/p;) be the posterior probability that reflect the
upload belief that model;, appears in the scene after the
partp; is observed.

this index.

Figure(4) shows the first seven results corresponding
the search for the image query on figure (4), in our databa:

In order to derive the posterior probabiliB(I; /p;) we
need to estimate prior probabiliti®gp; /I.) andP (1), we
assume thap (Iy) is the same for every image or viewlIn
Once certain parp;, is decided to be used for indexing, we
compute the likelihood (p; /Iy).

Query image

e—d(piIx) \If [
Ppi/ly) = ———— 1) \
d(pj, 1) | % s
Vp;€Q | \ (/
We notice that for each papt; € Q: : /] = .;' —
If..l/j._':: '.:. I_l_ _I/ -..)_,f'-'L_'_‘. ..
Z P(p;/Ix) =1 N>\ W~

Vpi€Q
whered(p;, I},) denotes the distance betwegrand part

pi corresponding to a peak of the CSS belonging to the  \we yse the curves recall/precision on figure (5) to com
query imageQ, the posterior probability is then computed pare results of seach process udiftreeand the sequential
as. method withoutM-tree. Results shows that the first results
are most relevant, and that the use of full information CS
combined with partial search method withtree, improve
accuracy of search.

Figure (6) shows curves recall/precision comparing re
sults of search process using M-tree and sequential mett
both combined with the bayesian proposed approach. V
notice that the probabilistic approach increase accuracy
search, since for this method more first results are similar
the request.

Indexing efficiency is evaluated by comparing the mod
ified M-tree with respect to the R-tree [5]. Figures (7)
compare the number of distances computatidasid run-
ning time, between the method usiktree the sequential
method and R-tree structure. The results obtained (distar
computations and running time) show thatTree outper-
formsR-tree

On figure (8), we show that the M-tree and sequenti
method combined with the probabilistic approach doesn
change calculating time. We can deduce thatNhd@ree
method with the bayesian approach give very good sear
satisfactory without increasing computing time.

We use the Vision, Speech, and Signal Processing Partial search efficiency is evaluated by comparin
Surrey University database, which contain about 1000 search results of the total query in figure (9) with the re

Figure 4. Results of search

P(ly) P(pi/Iy)
> Pi/Ii)

VIeT

P(I./pi) = @)

This formula is used to determine the distribution of the
posterior probabilities among the modéjsin I indexed by
Di-

Once the posterior probability (7 /p;) is computed for
every model;, € I and every peaj; , we can rank models
by:

vao(Ika): Z P(Ik/pl)

Vpi€Q

3

where Ry, denote the rank of the imagdy, with
Bayesian voting.

6. Experiments and results
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(9). The curve recall/precision in figure (10) shows a little
decrease of search accuracy for first, second and third par-
tial queries. But search accuray for the three partial queries
still very good. We can deduce that the method udihg

tree combined with the bayesian approach increase partial N ) )
search efficiency. curacy of search and outperform traditional indexing on th

R-Tree structure. Results shows that the Bayesian approz
combined with the proposed-Tree method increase con-
siderabely the accuracy of search results.

Figure 8. Computing time as function of the data set size
for all proposed method

7. Conclusion

In this paper we proposed retrieval by the shape similar-
ity using in Curvature Scale Space and an effective index-
ing using metric trees combined with a bayesian voting ap-
proach. Two distances have been proposed which model re+~ >- === i S ;
spectively token similarity (which defined thé-Tre and ilarity with perceptual distance and effective indexinBEE

Transaction On Multimedig2(4), December 2000.

shape Similarity. _ ) [2] P. Ciaccia, M. Patella, and P. Zezulan. Indexing metric spac
Experimental results obtained show the retrieval effec- with m-tree. InNSEBD 97 pages 67-86, 1997.

tiveness and indexing efficiency. Test results show that the[3] M. Daoudi and S. Matusiak. Visual image retrieval by multi-
use of arM-Treebased index permits to increase partial ac- scale description of user sketchésurnal of Visual Comput-
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