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Abstract

Understanding human activities from video sequences is an
extremely challenging problem because of the large number
of possible events, intra and inter person variations, occlu-
sion of different body parts, etc. Analysis of the trajecto-
ries of the various points involved in the activity has been
a standard technique for solving such problems. Though
trajectories do contain a lot of information regarding the
events, merely tracking a set of points is often not enough to
characterize an activity. For example, trajectories are not
view invariant. However, motion trajectories can be used
to build models corresponding to each event/activity, and
these models can then be used for classification. In this
paper, we propose that each activity can be modeled by a
non-rigid 3D shape model. The models are learned from
the trajectories of the various points using the factorization
theorem for structure and motion estimation. The distance
between various models is used for activity classification.
An estimate of the number of activities is also obtained by
performing a spectral analysis on the trajectory observa-
tion vector. Because of the intermediate step of creating the
3D model, the method provides view-invariant interpreta-
tion of the events and can be scaled to work with a video
sensor network. We present results of our method to under-
stand the activities of a group of moving people in an air-
port surveillance example and different activities of a single
individual.

1. Introduction

Activity modeling and recognition from video sequences
has become one of the central problems in computer vision.
Traditionally, there has been a keen interest in studying hu-
man motion in various disciplines. In psychology, Johans-
son conducted classic experiments by attaching light dis-
plays to various body parts and showed that humans can
identify motion when presented with only a small set of
these moving dots [5]. Muybridge captured the first pho-
tographic recordings of humans and animals in motion in
his famous publication on animal locomotion towards the
end of the 19-th century[6]. In kinesology the goal has been
to develop models of the human body that explain how it

functions mechanically [3]. Possible areas of application
of computer vision techniques to human motion analysis
are video surveillance and monitoring, human computer in-
teraction, video transmission and analysis, medicine, com-
puter graphics and virtual reality. Various techniques have
been used for the study of actions from sequences of images
(e.g. [2], [4], [7], [1], [11]).

In order to recognize different activities, it is necessary
to construct an ontology of various normal (both frequent
and rare) events. Deviations from a pre-constructed dictio-
nary can then be classified as abnormal events. It is also
necessary that the representation be invariant to the view-
ing direction of the camera, and independent of the number
of cameras (i.e. should be scalable to a video sensor net-
work). Trajectories, usually computed from 2D video data,
are a natural starting point for activity recognition systems.
Trajectories contain a lot of information about the under-
lying event that they represent. However, most prevalent
systems do little more than tracking a set of points over a se-
quence of images, and try to infer about the event from the
set of tracks. Trajectories are ambiguous (different events
can have the same trajectory) and depend on the viewing di-
rection. Also, identifying events from trajectories requires
the enunciation of a set of rules (often ad-hoc), which can
vary from one instance to another of the same event. Hence,
it is important to have aproperintermediate step in the leap
from trajectories to event models (see Figure 1). In a re-
cent paper, Rao, Yilmaz and Shah [8] proposed a method
of representing a trajectory in terms of dramatic changes in
its speed and direction (dynamic instants). In [11], the au-
thors propose a shape model (along the lines of Kendall’s
shape theory) on the set of points in each image frame and
describe an activity by the dynamics of the shape.

In this paper, we propose a different approach to bridge
the set of trajectories with the class of activity models. The
intermediate processing step of Figure 1 is a 3D non-rigid
representation of the activity. We propose that each activ-
ity can be represented by a non-rigid shape model. The 3D
representation captures the 3D configuration and dynamics
of the set of points taking part in the activity and is inde-
pendent of the viewing direction of the camera. Also, the
method works whether we have a single camera or a net-
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Figure 1: The framework for activity inference.

work of cameras looking at the scene. The 3D shape esti-
mation is done using the factorization theorem [9], modified
for non-rigid shapes [10]. A similarity measure between
different 3D models is used to classify between the various
activities. We demonstrate the applicability of our approach
in an airport surveillance problem. We also show how this
approach can be used in the problem of video summariza-
tion. We would like to clarify that we do not address the
issue of obtaining reliable trajectories in this paper, since
we consider this to be a separate research problem. A set
of heuristics, along with low-level image processing tools,
was used to generate reliable tracks in our test video data.

2. Shape Based Activity Models

2.1 Motivation
The model proposed in this paper is a non-rigid 3D structure
for each activity, which can be estimated from the trajecto-
ries. It is based on the empirical observation that many ac-
tivities have an associated structure and a dynamical model
. Consider, as an example, a dancer or figure skater, who is
free to move her hands and feet any way she likes. How-
ever, this random movement does not constitute the activ-
ity of dancing. For humans to perceive and appreciate the
dance, the different parts of the body have to move in a
certain synchronized manner. In mathematical terms, this
is equivalent to modeling the dance by the structure of the
body of the dancer and its dynamics. Similar comments can
be made for other activities performed by a single human,
e.g. walking, jogging, sitting, etc. An analogous example
exists in the domain of video surveillance. Consider peo-
ple getting off a plane and walking to the terminal, where
there is no jet-bridge to constrain the path of the passengers
(see Figure 2). Every person after disembarking, is free to
move as he/she likes. However, this does not constitute the
activity of people getting off a plane and heading to the ter-
minal. The activity here is comprised of people walking
along a path that leads to the terminal. Again, we see that
the activity is defined by a structure and the dynamics asso-
ciated with the structure. Using a shape-dynamical model is
a higher level abstraction of the individual trajectories and
provides a method of analyzing all the points of interest to-
gether, thus modeling their interactions in a very elegant
way.

2.2 Computing the 3D Model
We hypothesize that each activity can be represented by a
linear combination of 3D basis shapes. The difference be-
tween the basis shapes can be used to compute the similarity

Figure 2: An example of people disembarking from an airplane.

between two activities. Mathematically, if we consider the
trajectories ofP points taking part in the activity, then the
overall configuration of theP points is represented as a lin-
ear combination of the basis shapes as

S =
K∑

i=1

liSi, S, Si ∈ <3×P , l ∈ <. (1)

The choice ofK will depend on the particular application
and we will explain the details of it when we describe the
experiments. We will assume that we have methods to ob-
tain the trajectories accurately. Also we will assume a weak
perspective projection model for the camera.

A number of methods exist in the computer vision lit-
erature for estimating the basis shapes. In [9], the authors
consideredP points tracked acrossF frames in order to
obtain twoF × P matricesU andV. Each row ofU con-
tains the x-displacements of all theP points for a specific
time frame, and each row ofV contains the corresponding
y-displacements. It was shown in [9], that for 3D rigid mo-

tion under orthographic camera model, the rank,r, of

[
U
V

]

has an upper bound of3. In [10], it was shown that for
non-rigid motion, the above method could be extended to
obtain a similar rank constraint, but one that is higher than
the bound for the rigid case. We will use the last mentioned
method for computing the basis shapes. We will outline the
basic steps of their approach in order to clarify the notation
for the remainder of the paper.

Given F frames of a video sequence withP moving
points, we can obtain the trajectories of all these points over
the entire video sequence. TheseP points can be repre-
sented in a measurement matrix as

W2F×P =
[

ui,1 · · · ui,P

vi,1 · · · vi,P

]

i=1,...,F

, (2)

whereuf,p represents the x-position of thepth point in the

f th frame andvm,p represents the y-position of the same
point.

Under weak perspective projection, theP points of a
configuration in a framef , are projected onto 2D image



points(uf,i, vf,i) as

[
uf,1 · · · uf,P

vf,1 · · · vf,P

]
= Rf

(
K∑

i=1

lf,iSi

)
+ Tf , (3)

where,Rf represents the first two rows of the full 3D cam-
era rotation matrix andTf is the camera translation. The
translation can be eliminated by subtracting out the mean of
all the 2D points, as in [9]. Henceforth,W will represent
the measurement matrix with the means of each of the rows
subtracted out. Using (2) and (3), it is now easy to show
that [10]

W = Q2F×3K .B3K×P . (4)

The matrixQ contains the pose for each frame of the video
sequence and the weightsl1, ..., lK . The matrixB contains
the basis shapes corresponding to each of the activities. In
[10], it was shown thatQ andB can be obtained using sin-
gular value decomposition (SVD) asW2M×P = UDVT

andQ = UD
1
2 andB = D

1
2 VT .

2.3 Activity Inference
Having obtained the 3D models, the next step is to clas-
sify between various activities. Our approach for activity
inference consists of a learning/training phase and a testing
one. During the training phase, the 3D models for vari-
ous activities are computed. Given a test sequence, the 3D
model estimated from this sequence is compared with that
learned before and a similarity score is computed based on
a measure of the difference of the two 3D models. The ex-
act method for computing this difference is based on the
particular application. We consider the activity of a group
of objects (people and vehicles in an airport), each object
being represented as a point. The paths followed by the
passengers and the vehicles are very different, and the 3D
model of these paths are estimated and compared. The val-
ues of the weighting coefficients,li, are used to differentiate
between the activities. Details of the processes are available
in Section 3.

3. Experimental Results

In this section, we consider a video surveillance application
in an airport scenario. A group of people get off an air-
plane and walk to the terminal. Also, there are other mov-
ing objects like vehicles, airport personnel, etc. The goal
is to classify between the activities of the different groups
of objects (people vs. vehicles) and to identify an abnormal
behavior (e.g. a passenger straying from the normal path),
using the information available in the trajectories.

Given a video sequence with each moving point repre-
senting the motion of a different activities/objects, we can
obtain the trajectories of all these points over the entire
video sequence. The trajectory defines the particular ac-
tivity. For the case of people getting off an airplane, each

person is represented by a point. An average trajectory over
all the people represents the activity of people getting of the
plane. If we haveM different training video sequences
with different instances of the same activity, we can obtain
many such example trajectories. Each of the example tra-
jectories can be sampled uniformly to produce a set ofP
points, each represented as a pair ofx andy co-ordinates,
for each video sequence. Note that the number of rows in
the matrixW in (2) depends on the number of training se-
quences, i.e.F = M .

During training, we compute the rotation matrix and the
average shapes as explained above. For themth video se-
quence, consider the rows(2m − 1) and2m of the matrix
W, and represent it byWm. It represents the average tra-
jectory of the activities in themth training sequence. From
(3), we see thatlm,i can be computed by taking the inner
product ofWm with RmSi, i.e.

lm,i =< Wm,RmSi > (5)

for each activityi = 1, ..., N and for each training video se-
quencem = 1, ..., M . Thus for each activityi, we haveM
values ofli. These multiple values ofli represent a signifi-
cant part of the range of values that can be taken by different
instances of these activities. Since a fixed camera is looking
at the same set of activities, the rotation matrices will not be
very different between the different instances of the same
activity (see Fig. 3(a)). Hence, all theli for each activity
cluster together and can be used for recognition (see Fig.
4(b)).

During testing, we consider the trajectory of each object
in the video sequence. The procedure described above can
be re-applied to the set of tracked points in the sequence
in order to obtain the configuration weights by projecting
onto the rotated basis shapes, as in (5). The cluster to which
the computedli belong can be used to identify the activity.
The intuitive idea is that the set of weights learned from the
training examples cover most of the possible ones for nor-
mal activities. Thus, if projections for the test activity lie
within a cluster for one of the activities, then we can claim
to have recognized that particular activity. In practice, we
can set a threshold,T < M , for the number of projections
that need to lie within a cluster for the activity to be recog-
nized as such. By this method, the activity of each object
is individually detected and verified in this 3D shape space.
One of the advantages of our method is that it is computa-
tionally very inexpensive, since all that it does for classifi-
cation and verification is to compute projections of tracked
features onto basis shapes learned a-priori.

In Figure (4)(a), we plot the average centered shapes (i.e.
after the mean of every row ofW is subtracted out) for the
two major activities, path of passengers disembarking (rep-
resented byS1) and the path of the luggage cart or fuel tank
(represented byS2). The airport personnel are identified a-



priori and their motion is neglected for the purposes of this
analysis. The plot of the various values oflm,1 andlm,2 for
all m, learned from the training sequences, is shown in Fig-
ure 4(b), thus showing the clear demarcation between the
two activities. In Figure (5)(a), we show the plots of the
projections of the activity of passengers deplaning on the
two sets of rotated basis shapes, learned during the training
phase, i.e.RmS1 andRmS2, for m = 1, ..., 150. The pro-
jections of the path taken by the luggage cart on the two sets
of rotated basis shapes is shown in Figure (5)(b). The plots
in Figure (5) can be used to distinguish between the two
activities, given just their motion trajectories by setting an
appropriate threshold and declaring an activity to be either
one or two, depending on the number of points on either
side of the threshold.

The next task is to determine any abnormalities. By this
we mean the detection of the case shown in Figure (3)(b).
Since the testing is done for each object at a time, the pro-
cess can identify the concerned individual or object. Since
we did not have real video sequences of such behavior, we
simulated it by pulling a passenger away from the normal
path. Figures (3)(c) plots the projections for the abnormal
activity and a normal one on the set of rotated basis shapes.
The clear difference in the projections shows the difference
in the two activities, which can help to identify the abnor-
mal one.

The Receiver Operating Characteristic (ROC) of the ac-
tivity detection algorithm, is shown in Figure 4(c). The
plots are obtained through simulations by varying the
threshold of detection for the two normal activities, as well
as the abnormal one. For classification between the two ac-
tivities, a detection occurs when a test activity, say A, is
recognized correctly from the projections onto the set of ro-
tated basis shapes of A, while a false alarm is defined as
the case when the projections onto the rotated basis shapes
of A of the trajectory obtained from some other activity ex-
ceeds the detection threshold. For an abnormal activity, a
detection occurs when it is correctly identified as abnormal,
while a false alarm occurs when a normal activity is flagged
as abnormal.

3.1 Video Summarization

We performed an experiment to summarize a three minute
segment of video obtained for the airport surveillance ex-
ample in the activity shape space using the subspace anal-
ysis method. The motion trajectories of all moving objects
were considered. They included the passengers, a luggage
cart and an airport personnel (whose motion has not been
modeled as part of the training procedure, but who can be
seen at the bottom of Figure 2). The motion trajectory of
each individual object was projected onto the set of rotated
basis shapesRmSi, for m = 1, ..., 150, i = 1, 2 learned
from the training examples, as explained before. Figure 5(c)
shows the projections form three clusters, corresponding to

the motion trajectories of 10 passengers, the luggage cart
and an airport personnel. These three clusters contain in-
formation about all the moving objects in the three-minute
segment of the video. Hence we see that it is possible to
summarize the motion of all objects in the scene in the shape
space.

3.2 Human Motion Analysis

The approach outlined in this paper was also applied to the
problem of recognizing the activities of a single individual.
For want of space, we cannot describe the details of the ex-
periment here. However, we present the final result in the
form of a similarity matrix (Figure 6(b)). Examples of the
first basis shape for some of the activities is shown in Figure
7 and the criterion for computing the similarity between the
basis shapes is shown in Figure 6(a). It is apparent from the
matrix that similar activities are grouped together, thus val-
idating this approach. Moreover, this experiment involved
significant changes in viewing direction and the use of mul-
tiple cameras.

4. Conclusion

In this paper we have proposed a method for activity mod-
eling and inference using the non-rigid 3D structure of the
configuration of points taking part in the activity. The
3D shape is estimated from the motion trajectories of the
points under the assumption of scaled orthographic projec-
tion. The approach fits into the general framework of infer-
ring high level information about different activities start-
ing from the trajectories. Our approach is independent of
the viewing direction of the camera and can be extended to
the situation of a video sensor network looking at the scene.
Experimental results are shown for classifying between var-
ious activities of a group of people and vehicles in an airport
surveillance scenario.
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Figure 3: (a): Plot of the first and second rows of the rotation matrices. (b): An example of an abnormal activity where the average
trajectory is distorted to simulate an abnormal behavior. (c): Projections of the abnormal activity and a normal one on the rotated basis
shapes for the first activity.
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Figure 4: (a) Plot of the centered shapes formed from the average trajectories of the two activities. (b): Plot of the projections of the
various instances of the two activities, as available in the training data, onto the rotated basis shapes. (c): ROC plots for classification of
the two normal activities and the abnormal one.
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basis shapes for the second one are shown in (b). (c): A video summarization example: projections of all the motion trajectories in a three
minute segment of the video sequence onto the basis shapes. The red cluster contains the projections of the passengers, the blue of the
luggage cart and magenta of the airport personnel whose motion was not modeled as part of the training examples.

[8] C. Rao, A. Yilmaz, and M. Shah. View-invariant represen-
tation and recognition of actions.International Journal of
Computer Vision, 50(2):203–226, 2002.

[9] C. Tomasi and T. Kanade. Shape and motion from image
streams under orthography: A factorization method.Inter-
national Journal of Computer Vision, 9:137–154, November
1992.

[10] L. Torresani and C. Bregler. Space-time tracking. InECCV,
2002.

[11] N. Vaswani, A. RoyChowdhury, and R. Chellappa. Activ-
ity recognition using the dynamics of the configuration of
interacting objects. InCVPR, 2003.



(a) (b)

Figure 6: (a): The various angles used for computing the similarity of two models is shown in the Figure. The text below describes the
seven dimensional vector computed from each model and whose correlation determines the similarity scores. (b): The similarity matrix
for the various activities, including ones with different viewing directions and multiple cameras.
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Figure 7: (a) - (c): Plots of the first basis shape,S1 and combination coefficientsli (against time) for walk, sit and broom sequences,
respectively.


