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Abstract

In Positron Emission Tomography, penalized iterative al-
gorithms like MAP often results in over smooth reconstruc-
tions due to over penalizing nature of the assumed inter-
acting potential. These algorithms fail to determine the
density class of the estimate and hence penalize the pix-
els irrespective of the density class. In this work, a fuzzy
logic based approach is proposed to model the prior which
captures the nature of pixel-pixel interaction. Quantitative
analysis shows that the proposed fuzzy rule based recon-
struction algorithm is capable of producing comparable es-
timates when compared to MAP and MRP algorithms. The
reconstructed images are sharper in nature and the pres-
ence of spatially confined minute features are well recon-
structed due to the local nature of the penalizing fuzzy po-
tential.

1. Introduction

Many of the present day applications such as diaonos-
tic imaging modalities like positron emission tomogra-
phy (PET), single photon emission computed tomogra-
phy (SPECT) demand high quality images. Iterative algo-
rithms like, maximum likelihood (ML) [18][8], maximum
a-posteriori (MAP) [16][4][12][19][17][7] and median root
prior (MRP) [13][14] algorithms are a few handful algo-
rithms which are capable of generating good quality images
in emission tomography (ET). In emission tomography, the
stochatic algorithms like ML, MAP or MRP are far superior
than their deterministic counterparts such as convolution
back projection (CBP) [18][9] and weighted least squared
(WLS) [5] etc. The superiority of ML, MAP, MRP is due
their ability to incorporate the stochastic phenomenon emis-
sion statistics (Poissonian) and nearest neighbor interaction
in the image reconstruction process.

Recently, a lot of interest is shown in the application of
fuzzy techniques in image processing applications like in-
terpolation [1], image restoration [2] etc. In the present
work we have extended fuzzy concepts to PET image re-

construction modality. Fuzzy rule based potential consists
of two major steps : Fuzzy Filtering and Fuzzy Smothing.
Fuzzy filtering filters out the noise that builds up with in-
creasing iteration [3], by distinguishing the intensity vari-
ation due to noise and due to image structure. Thereafter
smoothing is performed for noisy pixels using neighboring
pixels. These operations are performed iteratively untill the
estimate converges and stabilizes.

2. Image Reconstruction Algorithms for PET

The measurements in PET , ��� , � =1,...,M are
modeled as independent Poisson random variables i.e,� ��� ���
	��
�
�
�������������� ����� � � for � =1,...,M , where � �
, ! =1,...,N are the mean parameters of the emission pro-
cess and

�"� � is the probability that an annihilation in the	�#%$ pixel is detected in & #%$ detector. The likelihood func-
tion i.e, the conditional probability for observing ')(+*
given the emission parameter ,-( � is the joint probabil-
ity of the individual Poisson process. Maximum a posteri-
ori (MAP) algorithm determines that estimate �/.10 , which
maximizes the posterior density function �2�3�/4 � � . Given a
suitable prior �2�5��� , MAP-reconstruction can be formulated
as, � .16�7 (982:�;<>=�?A@
B � CD�2� � 4E�"�GF B � CD�2�3�"��H (1)

Image field is assumed as Markov random field (MRF)
[19] and by Hammerseley-Clifford theorem [6], image � is
characterized by Gibbs distribution,�2�3�"� ( IJLKNMPOQ�R�S < T (2)

where, Z is the normalizing constant for the distri-
bution, U is the Gibbs hyper-parameter, and V �3�"� (�9�W� �YX ��Z\[ � �
] �5� �_^ � � � is Gibbs energy. [ � � is the weight
of pixel &\`ba �

[12], a �
is the nearest neighbor set of pixel 	

and ] �3� �c^ � � � is termed as the potential at site 	 due to the
nearest neighbor elements &\`ba �

.
Solution for eqn.(1) is very difficult due to the compli-

cated nature of prior. Green [12] has proposed one step late



(OSL) approximation for an iterative update to the MAP-
problem,�"dfe �� ( � d�g � .� �c� ��� �hF �i � �YX � Z�jlk�m S < Z�n <
o_Tk < Z p < Z � <
qZ rts.u� ��� � � ��� ��������� � d� � � � (3)

Given OSL-algorithm (eqn.(3)), the next step is the
proper modeling of the interacting potential ] �5� � ^ �W� � be-
tween the pixel at site 	 and &\`ba �

. A large number of po-
tentials have been suggested in the literature to produce de-
sired image characteristics [12][19][14]. These potentials
penalize the differences between the pixels irrespective of
the density class in the nearest neighborhood. Hence result-
ing in artifacts like oversmoothing, streaking [14] etc.

3. Fuzzy Rule Based Potential Function

In this section, a fuzzy logic based expression for the po-
tential is developed keeping in view the necessity of edge-
preservation of the reconstructed images. This consists
of two elementary steps : fuzzy filtering using directional
derivatives and fuzzy smoothing. This idea is primarily bor-
rowed from Ville et. al. [2]. Nevertheless the idea is ex-
panded, generalized and adapted for image reconstruction
applications in PET.

Derivative v d �%	 ^ & � for pixel at �w	 ^ & � along the directionx� at y #%$ iteration is defined as,v d �%	 ^ & � x� ({z � d �w	 ^ & �}|~� d �5� ^ �>� z x�
where, � d �5� ^ �E� x� represent the pixel along the unit direc-
tional vector

x� .
For identifying edge in a particular direction, three ele-

mental derivatives are chosen (see fig.1). For example to de-
tect an edge in the N-S direction, the following three deriva-
tives are used :v d �w	 ^ & � x� (�z � d �%	 ^ & �c|~� d �w	 ^ & | I � zv d �w	c| I ^ & � x� ({z � d �w	�| I ^ & �A|�� d �%	�| I ^ & | I � zv d �w	GF I ^ & � x� ({z � d �w	�F I ^ & �A|�� d �%	/F I ^ & | I � z
It is safe to assume that if 2 out of 3 elemental derivatives
are small, the edge is absent in the neighborhood. This is
termed a 2:3 rule. To compute the value that expresses the
degree to which the fuzzy derivative in a certain direction
is small, we make use of fuzzy set �
�����%� . Based on this
observation, the values of the fuzzy derivatives v d� �w	 ^ & � x�

Figure 1. � s � neighborhood of a central pixel (i,j),
showing the directional derivative along

x�
.

for all the directions i.e, � x� ^ xa ^ x� ^ xa � ^ x� � ^ x�}� ^ xa �t�
are calculated. For example, for

x� ( x�
the value of the

fuzzy derivative is defined as follows :
If �� � v d �%	 ^ & �G�\�G� v d �w	�| I ^ & ���\� K �
�����%�D���v d �%	 ^ & �G�\�G� v d �w	/F I ^ & ���\� K �
�����%�D���v d �%	�| I ^ & ���N�G� v d �%	/F I ^ & ���\� K � �����3�

Then, v d� �%	 ^ & � x�
is �
�����%�� B � K ^ v d� �w	 ^ & � x� 	�� �%�D���"� (4)

To compute the value that expresses the degree to which
the fuzzy derivative is small, we make use of fuzzy set�
�����%� . Fuzzy sets are best represented by membership
function. Membership function � of a fuzzy set � maps
the elements of � into a binary value [0,1]. Membership
function at site �w	 ^ & � in the direction

x�
at y #%$ iterations for

the property � �����%� is defined as,� d �w	 ^ & � x� (��¡  if v d. �w	 ^ & �h¢ v d �w	 ^ & �I ^
otherwise.

(5)

where,v d. �%	 ^ & � x� (�£ K �\� �
v d �w	c| I ^ & � ^ v d �w	 ^ & � ^ v d �w	GF I ^ & � �
A value of 0 indicates the absence of edge while 1 indi-

cates the presence of edge. The set � �����3� corresponds to 0
and �3�D����� corresponds to 1. Similarly, along all the direc-
tions viz. � x� ^ xa ^ x� ^ xa � ^ x� � ^ x��� ^ xa �t�

the membership
functions are defined.

After edge detection the next step is the penalization
of the noisy pixels by proper feedback of the correction
value. Only those pixels for which edges are not detected
in the nearest neighborhood are subjected to penalization,
else they remain unaltered. The following rule is used for
penalization :

If v d� �w	 ^ & � x� is � �����%� , ¤/¥�¦¨§L© d �%	 ^ & � x� (�v d �%	 ^ & � x� .� B � K ^ © d �w	 ^ & � x� (   (6)



where, © d �%	 ^ & � x� is the feedback at site �w	 ^ & � due to the
pixel in the direction

x� at y #%$ iteration. Eight such rules
are used to get the contribution from all the eight direction.
There are 8 such rules for each of the 8 directions. Hence,
the total correction term © dª �w	 ^ & � for pixel at �w	 ^ & � consid-
ering all the directions at y #%$ iteration is given by,© dª �%	 ^ & � ( I« u�¬­ © d �w	 ^ & � x� (7)

Each direction contributes to the final correction term© dª for pixel at �%	 ^ & � . Replacing the error term� �YX ��Z�jlk�m S < Z n < o Tk < Z p < Z � <
qZ in eqn.(3) by © dª �%	¯®�� = © dª �%	 ^ & � ,
the OSL-algorithm modifies to,� dfe ���° ( � d��°g � .� ��� � ��° � F �i © dª �%	 ® � r

.u� ��� � � �"� ° ����±_��� � d± �/± � (8)

where, coordinates �w	 ^ & � is denoted by a single coordi-
nate � 	¯® ( �w	�| I �}��² a F & � . In the iterative image re-
construction procedure, the final correction term is fed back
to update the pixel after each iteration. The iterations are
continued until acceptable convergence is obtained.

The fuzzy rules explained in the previous subsections
3.1, 3.2 and 3.3 are for the neighborhood window of size� s � . In this subsection the fuzzy rules are defined for³ s ³

neighborhood window. In the case of � s � win-
dow the fuzzy directional derivative is calculated using 3
elemental derivatives per direction. The sensitivity of edge
detection depends upon the number of derivatives used for
edge detection. To study the effect of window size on the re-
constructed image, five elemental derivatives per direction
are used. For example, the elemental derivatives used for
edge detection in

x� �
direction are v d �%	 ^ & � ^ v d �%	/| I ^ & |I � ^ v d �w	�F I ^ & F I � ^ v d �%	�|µ´ ^ & |µ´N� and v d �w	�F¶´ ^ & F¶´N� .

Similarly, for all the directions 5 elemental derivatives are
chosen for edge detection and 3:5 rule is used for edge de-
tection. The membership function will have the same form
except that for

³ s ³
window, the mean v d. �w	 ^ & � x� is taken

over all the 5 elemental derivatives. The rest of the method
is similar to that for � s � window.

4. Simulated Experimental Results

Implementation of the proposed algorithm is performed
on a simulated PET system. The general description of PET
system is given below.

The PET system consists of a ring detector with ·E¸ detec-
tors and the object space is decomposed into ·E¸ s ·E¸ square
pixels. For simplicity, we assumed that i.e,

�/� � (º¹ Z o» [18].

Figure 2. Log-likelihood values for MAP and proposed
fuzzy algorithm with � s � and

³ s ³
window.

Figure 3. Residual Error plot for MAP and proposed fuzzy
algorithm with � s � and

³ s ³
window.

Before the reconstruction begins, the probability matrix ¼( @ ��� �¨H , !t(¾½ ^
¿À¿�¿�^YÁ and �Â(Ã½ ^
¿À¿�¿À^ÅÄ is computed and
stored. For simulating measurement data, a Monte Carlo
procedure is used [18][11]. We have used a source image
with 100,000 counts.

All the evaluation tests defined in this section are carried
out on the proposed fuzzy algorithm with � s � and

³ s ³
neighborhood window. The results are also compared with
MAP reconstruction algorithm. MAP with potential ] (�3� � |Æ� � ��Ç and UÈ( ´ ¿ ³ s I  >É is used in this study. This
choice of U is considered because it gives the best MAP
estimate. The performances of the proposed new algorithm
are evaluated using three different image-based quantitative
criteria as given below :

Since MAP, MRP and the proposed algorithms compute
the estimate of the emission densities iteratively, hence log-
likelihood function is an appropriate qualitative measure.
For an estimate � d , the log-likelihood function B �5� d � at y #%$



Figure 4. First row shows reconstruction after 50 itera-
tions for (a) MAP, (b) MRP, (c) proposed algorithm. Sec-
ond row shows reconstruction after 100 iterations for (d)
MAP, (e) MRP, (f) proposed algorithm.

iteration is defined as,B �3� d � ( .u� ��� @ |ËÊ d� F � �GÌ�Í>Î�Ê d� |ÏÌÀÍNÎ"� � �>Ð �¯H (9)

where, Ê d� ( �������� � d� � � � is the pseudo-projection in the
tube & .

The log-likelihood values of the reconstructed images
obtained using MAP and proposed algorithm for both � s �
and

³ s ³
are plotted against the iterations in fig.2. It is

clearly evident that log-likelihood for the proposed algo-
rithm converges faster compared to MAP-algorithm.

The second evaluation test is the residual error. This
measures the deviation of the generated pseudo-projectionsÊ d� of the reconstructed image from the observed projection
data � � . Residual error Ñ �5� d � at y #%$ -iteration is given by,Ñ �3� d � ( .u� ��� � �
� |~Ê d� � Ç (10)

In fig.3, the residual errors of the reconstructed images for
the proposed algorithm with � s � and

³ s ³
window along

with MAP and MRP algorithms are shown. From these
plots it is clear that proposed algorithm has residual error
comparable to MRP and better than MAP.

In fig.4, first and second rows show the reconstructed
images using MAP, MRP, proposed algorithm for � s � and³ s ³

after 50 and 100 iterations respectively. For visual
comparison, original test image is also shown. Images re-
constructed using the proposed algorithm are more appeal-
ing and rich in edges compared to MAP and MRP.

Furthermore, to quantify the reconstructed images, a
small edge part of the Shepp-Logan phantom is enlarged.
Fig.5 shows an enlarged portion of the reconstructions using
MAP, MRP, proposed algorithm for � s � and

³ s ³
neigh-

borhood window. For comparison, a part of original Shepp-
Logan phantom is also shown in fig.5. Reconstructed im-

Figure 5. Enlarged part of the reconstructed images after
100 iterations.

ages using the proposed algorithm compares favorably with
MAP and MRP reconstructed images.

5. Conclusions

In this paper, we have presented a new approach for edge
preserving reconstructed of the emission densities in PET.
This is based on the application of fuzzy rule based tech-
niques to model the potential (which accounts for the near-
est neighbor interaction) in image reconstruction problem.
Two basic steps are performed namely fuzzy filtering and
fuzzy smoothing. This dual operation is continued itera-
tively until accepted convergence is obtained. Experimental
studies on a computer simulated PET system reveals that
the proposed algorithm competes favorably with the exist-
ing reconstruction algorithms like MAP and MRP. Visual
representation of the reconstructed planes using proposed
algorithms are more appealing compared to MAP and MRP
reconstructed planes. The results are very encouraging.
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