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Abstract

We present a lossy to lossless wavelet based image com-
pression scheme with progressive transmission and region
of interest coding functionalities for 2D and 3D magnetic
resonance images. Context based entropy coding is used to
efficiently code significance and sign information of wavelet
coefficients. Contexts for 2D and 3D schemes are built us-
ing a mutual information based context merging algorithm.
The obtained compression performance for the 3D scheme
of about 2.1 bits per pixel is comparable to the existing Mul-
tidimensional layered zero coding (MLZC) scheme [4].

1. Introduction

3D Magnetic Resonance Image (MRI) data, which con-
tains multiple slices representing a part of a body, requires
compression for efficient storage and transmission. Huge
amount of such data is generated in hospitals which requires
to be stored for future reference and study. Compression
of medical data is also required in teleradiology applica-
tions where image data needs to be transmitted over the net-
work. Lossless compression, progressive transmission and
region of interest (ROI) are important functionalities for a
compression scheme. Recent still image compression stan-
dard, JPEG 2000 which is a wavelet based scheme, provide
such functionalities for 2D images but is out of scope for
3D images. 3D MR images have correlation both within
and across the slices. Hence a compression scheme for 3D
MR images should exploit this correlation. In this work, we
present wavelet based compression schemes with the above
functionalities for 2D and 3D MR images. We employ sep-
arable 2D and 3D integer wavelet transforms for decorrelat-
ing 2D and 3D images respectively. We exploit correlation
within the wavelet subbands as against across the subbands
as in Embedded Zerotree wavelet (EZW) and Set Partition-
ing in Hierarchical Trees (SPIHT) [2] coders. This is based
on the recent studies of [1], [6] that exploitation of intra-
band correlation is better than interband correlation. JPEG

2000 which is based on Embedded Bit Coder with Optimal
Truncation (EBCOT) of [7] also exploits intraband corre-
lation. We also employ context based coding to efficiently
code significance and sign information of wavelet coeffi-
cients. Contexts for 2D and 3D schemes are designed on
a training data using the mutual information based context
merging algorithm of [5]. We compare the results of our 2D
and 3D schemes with that of Multidimensional layered zero
coding (MLZC) [4].

2. Mask Generation for ROI Coding

A typical MR image consists of two parts:
1. Air part (background)
2. Flesh part (foreground)

The flesh part contains the useful clinical information which
needs to be compressed without any loss. On the other hand,
the air part does not contain any clinical information. This
has been verified with the radiologist we are collaborating
with. It is only noise and consumes unnecessary bit budget
and impairs the performance of a compression scheme. We
generate image masks in such a way that the flesh part is
totally included and the pixel values in the air part are made
zero. This mask is used as region of interest in our coding
scheme. Morphological operations can be effectively used
to generate image masks, which contain a value of ’1’ in
the foreground and a value of ’0’ in the background. The
original image is then multiplied with these masks to obtain
”background noise free” images while keeping the informa-
tion in the foreground intact. The algorithm for generating
the mask is given below:

1. Binarize the image with a threshold decided by the his-
togram of the image.

2. Holes may be formed within the foreground. Close
these holes using morphological ’closing’ operation.

3. Background may contain spurious lines. Use morpho-
logical ’erode’ operation to remove these lines.

4. The above erosion operation also erodes the boundary
of the foreground region. To make sure that the mask
spans the entire foreground region, use morphological
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Figure 1. Suppression of background in an MR image
using morphological operations. (a) original image (b)
the generated mask (c) background suppressed image.

Figure 2. Sample 8 consecutive slices of Brain MR Im-
ages with 1mm thickness.

’thickening’ operation to thicken the boundary of the
foreground region.

5. Multiply the original image with the resulting binary
mask.

Figure 1 shows an MR image, its mask and the image
obtained after multiplication with the mask.

3. Integer Wavelet Transform

Lossless compression is not possible with conventional
wavelet transforms because they map integer-valued image
data to real-valued wavelet coefficients. For lossless image
coding, we need a transformation which results in integer
coefficients. This can be achieved by integer wavelet trans-
forms. These transforms can be built using lifting schemes
as explained in [3]. We need 2-D transforms for images
which can be easily obtained by applying 1-D transform on
rows and columns separately. Such transforms are called
separable transforms. Likewise 3-D wavelet transform can
be obtained by applying 1-D transform to the three dimen-
sions sequentially. Figure 2 shows sample MR slices to be
compressed and Fig. 3 shows 3-D separable integer wavelet
decomposition of the above MR Images with 2 levels in spa-
tial and 2 levels in temporal (across slices) domain

Figure 3. 3-D Separable Integer Wavelet Decomposition
of the above MR Images with 2 levels in spatial and 2
levels in temporal (across slices) domain.

Figure 4. (a) MR image (b) its corresponding mask, bright
regions show region of interest (c) 2-level wavelet de-
composition of (a) and (d) 2-level decomposition of mask
in (c) showing regions of interest in each subband.

4. Coding Scheme

4.1. 2D Scheme

We propose a new Region of interest (ROI) based cod-
ing scheme for 2D and 3D images. We exploit intraband
correlation instead of interband correlation as in SPIHT or
EZW algorithms. We first give the algorithm for 2D im-
ages which can be easily extended to 3D images. We use
a fixed-block to exploit intraband correlation. The region
of interest coding can be easily incorporated in intraband
schemes by using the masks generated in section II. We use
this mask to code only the regions of interest. In our work,
we define ROI as the flesh part. To be able to identify the
corresponding regions of interest in the wavelet domain, we
also decompose the mask. Figure 4 (a) and (b) respectively
show a MR image and its corresponding mask and (c) and
(d) respectively show a 2 level wavelet decomposition of
MR image and 2 level decomposition of mask. The ROI
for each subband is clearly delineated by the decomposed
mask.

1. Apply � -level 2-D separable integer wavelet transform
to the given image and label all background pixels as
”do not care” (DNC) symbols.

2. Tile the wavelet transformed image into ����� lattices.



3. For each lattice
�

having at least one non-DNC sym-
bol, find the maximum absolute value ���
	�� and ig-
nore lattices with all DNC symbols. Let ����� ������������� � � �
	��"! � be the threshold of the

��#%$
lattice.

Store these values in an array
#%$

.
4. Set the maximum of all the thresholds as the global

threshold, '& .
5. Scan the wavelet image starting from the lowest fre-

quency band to the highest frequency band in zig zag
manner. In each band, the lattices are scanned in a
raster order. Lattices with all DNC elements are not
scanned.

6. If (�*)+,& , the lattice is insignificant with respect to,& and a ’0’ is recorded in the list
�-� # �

. If ���./�01& ,
the lattice is significant and the decoder needs to be in-
formed of this. If this lattice is first time significant,
a ’1’ is recorded in the list

��� # �
. If the lattice is al-

ready significant, no information is sent to the decoder,
since this lattice will be significant for the future lower
global thresholds.

7. If the lattice is significant, check for the significance
of each non-DNC coefficient in raster scan order. If
the coefficient is significant, a ’1’ is appended to the
significant list

�324�"5
otherwise a ’0’ is appended. If the

coefficient is positive significant, a ’0’ is appended to
the sign list

�324�76
or a ’1’, if it is negative significant.

8. Refinement Pass: The current bit of the significant co-
efficients (at the previous threshold) is sent to the de-
coder through the list

�824�:9
.

9. Stop if the required bitrate is met or (&;�=< , otherwise,
set ,&;�>,&�? 5

and go to step 5.

The lists
�324�"5

,
�82@�76

,
�324��9

and
�-� # �

can be further losslessly
compressed by employing arithmetic coding. The mask in-
formation is sent as a side information to the decoder by
using differential coding of the coordinates of the contour
of the mask. At the decoder, the mask is simply generated
by filling the regions with in the contour. The side informa-
tion required is about <BA < 5 bits per pixel (

�DC�C
). Since the

most important coefficients (with higher thresholds E� ) are
coded before the least important ones (with lower thresh-
olds), there will be an ordering of wavelet coefficients re-
sulting in progressively transmittable bit stream. The de-
coder can stop at any step and reconstruct the image that
is best at that level. The image reconstructed at  & �F<
will be identical to the original image and hence results in
lossless compression. At low thresholds, more blocks will
be insignificant and a high value of � results in good com-
pression. But at low thresholds, more coefficients will be
significant and if � is high, the cost for sending individual
significance of each non-DNC coefficient is high. This im-
pairs compression performance at low thresholds. Hence
there is a trade off in the choice of lattice size � . We choose�G�>H which is based on our experimentation with different
values of � .

Figure 5. Masks showing regions of interest of MR im-
ages in 2

Figure 6. 2-level decomposition of masks of figure 5
showing regions of interest in each subband

4.2. 3D Scheme

The above scheme can easily be extended to volumetric
MR images. The idea is to exploit both intraframe and in-
terframe correlation in these images and hence to achieve
higher compression ratios. The motivation behind applying
3-D transform is to decorrelate the images across the slice
direction in addition to spatial decorrelation so that decorre-
lated images can be efficiently coded. Region based coding
is achieved by decomposing the masks similar to the 2D
case. Figure 5 shows masks of MR images of the Fig. 2.
Figure 6 shows 2 level decomposition of masks along both
slice and spatial directions. The decomposed masks in vari-
ous subbands delineate regions of interest. Tile the wavelet
images by cuboids of size �I�I�J�*� # (typically �I�KH and� # � 6

). Apply the algorithm described in the previous
section to obtain a progressive bit stream. The coding per-
formance can be further improved by using context-based
entropy coding of significance and sign lists.

4.3. Contextbased Entropy Coding

Arithmetic coders are not only more efficient than Huff-
man coders but also have the advantage that source model-
ing is independent of coding. If the symbols to be coded
are assumed to be independent of each other, then the lower
bound on the number of bits per symbol is given by the first
order entropy of the source to be coded. Arithmetic coders
asymptotically achieve this bound. But in practice, the sym-
bols to be coded are not independent of each other. For ex-
ample, if a wavelet coefficient � is insignificant, then we



can expect the neighbouring coefficients are also insignif-
icant. Also, significance of a coefficient can be predicted
using the significance information of its neighbours. Simi-
lar observations can be drawn for signs of the coefficients.
Using this correlation, one can reduce the lower bound on
the achievable bit rate using context-based coding. Let L be
the source symbol to be coded and M � L ! denote the first or-
der entropy. Let N be the context or conditioning event andM � L � N ! be the conditional entropy of L given the contextN . Then one can show that M � L !PO M � L � N ! with equal-
ity if and only if L and N are independent. The quantityQ � LSRTN ! �UM � L ! ?VM � L � N ! is called mutual information.
The greater the mutual information, the lower is the condi-
tional entropy and better is the coding performance. One
can maximize the mutual information by carefully choos-
ing the contexts. Generally contexts are defined based on
the already coded discrete symbols . Therefore the num-
ber of possible contexts are finite. Theoretically, the mutual
information can be maximized by choosing as large num-
ber of contexts as possible. But in practice, the number of
symbols to be coded are finite because of which some con-
texts may have few symbols. Since the probabilities of sym-
bols required for entropy coding are estimated on fly, lesser
number of symbols result in poor estimates of probabilities.
This increases the coding cost. This problem is called as
context dilution. To avoid this, we need to limit the number
of contexts without much decrease in mutual information.
The process of choosing a fixed number of contexts from
the possible contexts is called as context quantization.

A common approach is to project the higher dimensional
context onto a linear space (real line) and find appropri-
ate quantization levels on the real line by optimizing cer-
tain cost function [8]. Qunatization levels are generally ob-
tained either by using dynamic programming or by employ-
ing Lloyd-Max quantizer. These schemes are suboptimal
because projection of higher dimensional contextual infor-
mation onto a linear space results in information loss. In this
work, we use the method proposed by [5]. This method op-
erates directly on contexts N for finding the required num-
ber of contexts. This method is based on iteratively merg-
ing pairs of contexts which result in minimum mutual in-
formation reduction. This scheme is based on the result that
merging of contexts result in decrease of mutual informa-
tion. This scheme is used to form 2D and 3D contexts for
coding the significance list

�324�"5
. We employ the contexts for

sign list
�324�76

used in EBCOT. We first explain the context
merging algorithm.

Let W be the random variable representing the data sym-
bols to be coded and let X be the context. The mutual in-
formation is defined as

Q � XYRZW ! �\[ � [^] CE�3_E`%a ! ������� Cb�3_�`Za !Cb�3_ ! CE�8a ! (1)

where,
Cb�3_�`Za ! is the joint probability distribution and

CE�3_ !
and

CE�8a ! are respective marginal distributions of the ran-
dom variables X and W . Let c be the initial number of
contexts and d be the required number of contexts. The
context merging algorithm described in [5] is as follows:

1. Compute the joint probability distribution
CE�8_�`Za ! from

the training data.
2. Find the contexts

_1e
and

_gf
such that after combining

them, the reduction in
Q � XYRTW ! is minimum. This is

accomplished by pair wise search.
3. Merge

_1e
and

_gf
into one context.

4. Set ch�>cK? 5
. Repeat steps

6
and

9
until cU)id .

In [5], this algorithm was used for finding contexts for zero
coding (ZC) primitive in JPEG2000. For each wavelet coef-
ficient, eight first order neighbours are used to form a con-
text. Each element assumes

5
if it is significant wrt a thresh-

old or < if it is insignificant. Therefore, there will be
6�jlk

possible contexts. The above context merging algorithm is
used on a training data to reduce the number of contexts. It
was found that the coding performance with

9
or H contexts

was as good as m JPEG2000 coding contexts. We use sim-
ilar strategy to define contexts for significance map coding
for 2D and 3D schemes. In the 2D scheme, we use eight
first order neighbours to define a context. Let � �32n`Do ! be a
wavelet coefficient whose significance wrt to a threshold E�
needs to be coded. Let

2n`-o
be the coordinates of the coeffi-

cient. The first order neighbourhood of � �32n`-o ! denoted byp �32n`Do ! , is given by:

N(i,j) = [w(i-1,j-1), w(i-1,j), w(i-1,j+1), w(i,j-1),
w(i,j+1), w(i+1,j-1), w(i+1,j), w(i+1,j+1)]

Each element of
p �82n`-o ! is set to < or

5
depending on

whether its magnitude is less than or equal to  � . The
first four elements of

p �32n`-o ! are scanned before � �82T`Do ! and
hence they form a causal neighbourhood. The last four el-
ements are scanned after � �32n`-o ! and they form noncausal
neighbourhood. To be able to identify the contexts at the
decoder, we use threshold the  � for the causal elements
and  ��qEr for the noncausal neighbourhood. Since the sig-
nificance wrt to previous threshold E��qEr is already known
to the decoder in the case of noncausal neighbourhood. We
use any eight images from the database as training images
and form 256 contexts and estimate joint and marginal prob-
abilities of symbols < and

5
. We then apply the above con-

text merging algorithm to reduce the number of contexts tos
. We also use the same contexts for the other MRI dataset

called MR-MRI data set.
For the 3D scheme, we define 3D context as combination

of
s

first order neighbours and two elements in the previous
and future frames at the same spatial location. Let � �32n`-o"`Z� !
be the wavelet coefficient whose significance needs to be
coded. We define 3D neighbourhood

p �32n`-o"`T� ! of the loca-
tion

2T`Do"`Z�
as follows:



N(i,j,l) = [w(i-1,j-1,l), w(i-1,j,l), w(i-1,j+1,l), w(i,j-1,l),
w(i,j+1,l), w(i+1,j-1,l), w(i+1,j,l), w(i+1,j+1,l),
w(i,j,l-1), w(i,j,l+1)]
Again � �32n`Do�`T� ? 5 ! belongs to the causal neighbourhood
and � �32n`-o"`Z�'t05 ! belongs to the noncausal neighbourhood
and the thresholds are used accordingly so that decoder will
also be able to recover the contexts. Now there will be

5 < 6 H
possible contexts from which we select

s
contexts using the

context merging algorithm. We use any
s

consecutive MR
images from the data set as training images to built the re-
quired contexts. These contexts are used for the two data
sets. We do not use any contexts for refinement list

�324� # 9
as

the statistical redundancy is small for refinement bits.

5. Results and Discussion

We apply the 2D and 3D algorithms on
6�j�k � 6�j�k

,
s

bit
saggittal MR images provided by NIMHANS (NIMHANS
data set) and standard MR-MRI data set of [4] . We first
generate the masks required to define the regions of inter-
est using the mask generation algorithm defined in section
2. In this work, we assume the ”flesh” part as the region
of interest. We do not code the background image which
does not contain any useful clinical information. We send
the coordinates of the contour of the mask to the decoder as
a side information. The coordinates are coded using differ-
ential coding and requires about <gA < 5u�DC�C

to send the mask
information. At the decoder, the mask is reproduced by fill-
ing the region within the contour by

5^vw�
. We compare the

performances of coding schemes with and without region of
interest. We apply different integer wavelet transforms for
2D and 3D schemes and compare their performances. In the
3D scheme, we use the same filter for both spatial and axial
(across the slices) decomposition. We built contexts for 2D
and 3D schemes using

s
successive images from one data

set. We then use these contexts for other images. In the 3D
case, we can apply the compression scheme on the whole
volume. But this does not allow access of particular images
within the volume. Also, large memory size is required to
buffer all the images in the volume. A simple solution to
both of these problems is to apply 3D scheme on a group
of images (GOI). We define group sizes of

s
and

5�k
and

compare their performances. Finally, we compare the per-
formances of these schemes with the MLZC and 3D EZW
schemes of [4] on the data set MR-MRI.

5.1. Performance evaluation for different filters

Table 1 gives average lossless compression results in bits
per pixel (bpp) for 2D and 3D schemes with and without
context based coding on the NIMHANS dataset. We ap-
ply 2-level spatial decomposition for 2D scheme and 2-level
spatial and axial decomposition for 3D schemes. The group

Table 1. Lossless compression in (
�DC"C

) of 2D and 3D
wavelet schemes for different wavelet filters on NIMHANS
dataset. 2D-WOC:2D scheme without context coding,2D-
WC: 2D scheme with context, 3D-WOC: 3D scheme with-
out context, 3D-WC: 3D scheme with context.
Filter 2D-WOC 2D-WC 3D-WOC 3D-WC
(2,2) 2.35 2.2 2.18 2.12
(4,4) 2.31 2.18 2.17 2.1
(4,2) 2.33 2.18 2.18 2.1

(2+2,2) 2.33 2.18 2.18 2.1
(6,2) 2.33 2.19 2.18 2.11
(9,7) 2.36 2.21 2.21 2.13

Table 2. Lossless compression (in
�DC�C

) of 2D wavelet
based schemes with and without region of interest on
NIMHANS dataset. 2D-WOC-REC: 2D scheme without
ROI and Context coding, 2D-WC-REC: 2D scheme with-
out ROI and with Context coding.

Filter 2D-WOC-
REC

2D-WC-
REC

2D-
WOC

2D-
WC

(4,4) 3.12 2.35 2.31 2.18

size in the 3D scheme is
s
. We fix block sizes as Hx�IH andHy�zHy� 6

for 2D and 3D schemes respectively. All the filters
give comparable performances. 3D schemes perform better
than the 2D schemes and context-based modeling improves
the compression performance by about <BA 5{�DC�C

. The im-
provement in compression performance of 3D schemes is
about <BA 57�DC�C over the 2D schemes.

5.2. Rectangular vs Region of Interest Coding

Tables 2 and 3 respectively give the performance mea-
sures in

�DC"C
on the NIMHANS dataset for 2D and 3D

schemes with and without region of interest coding. In
the later case, we define entire volume as region of inter-
est and we call the coding scheme as ”Rectangular Coding
Scheme”. The filter used is

� H ` H ! , with 2 levels of spa-
tial and axial decomposition and with the same block sizes
as mentioned above. Using the region of interest coding,
performance of 2D improves by about <gA 6|�DC"C

over the
rectangular coding. In case of rectangular coding, the in-
corporation of context based coding improves the coding
performance by <gA~} �DC�C

. This can be attributed to the ef-
ficient coding of the significance map which contains large
number of zeros due to the background.

In the 3D case, using the region of interest coding im-
proves the coding performance by <gA 6��@C�C

over the rectan-
gular coding. In the rectangular coding, the use of context
based coding improves the performance by about <BA 9��DC�C

.



Table 3. Lossless compression (in
�@C�C

) of 3D wavelet
based schemes with and without region of interest on
NIMHANS dataset. 3D-WOC-REC: 3D scheme without
ROI and Context coding, 3D-WC-REC: 3D scheme with-
out ROI and with Context coding.

Filter 3D-WOC-
REC

3D-WC-
REC

3D-
WOC

3D-
WC

(4,4) 2.61 2.3 2.17 2.1

Table 4. Comparative performance of 3D schemes for
group sizes of

s
and

5�k
on NIMHANS dataset.

� H ` H !
filter is used for both the group sizes.

GOI size 3D-WOC 3D-WC
8 2.17 2.1

16 2.16 2.09

5.3. Effect of Group Size on the Coding performance

We evaluate the effect of group size on the coding perfor-
mance of the 3D scheme. We use two group sizes

s
and

5:k
with 2-levels of spatial and axial decomposition and with
the same block sizes as mentioned earlier. Table 4 shows
the performance comparison in

�@C�C
for the two group sizes.

The increase in performance with a group size of
5:k

over the
group size of

s
is very minimal. Increase in group requires

buffering of more slices and hence more memory require-
ments. Hence we fix the group size to

s
.

5.4. Overall Comparison

We compare the performances of 2D and 3D schemes
MLZC and 3D EZW of [4]. For the 2D and 3D wavelet
schemes, the performances are given for

� H ` H ! biorthog-
onal filter, with 2 levels of spatial and axial decomposi-
tion and a GOI size of

s
. Table 5 gives the performance

measures in
�DC"C

and the best performance is highlighted.
This scheme also performs better than MLZC and 3D EZW
on the MR-MRI data set. Although the MLZC algorithm
provides region of interest coding functionality, the perfor-
mance is given for lossless mode where the entire volume
is considered as region of interest. Therefore, comparison
should be made between the MLZC and the 3D scheme
without region of interest coding. As shown in Table 5, the
performances are similar.

6. Conclusions

We presented a new wavelet based coding schemes for
2D and 3D MR image compression. A 2D and 3D sep-
arable integer wavelet transforms are respectively used to

Table 5. Lossless compression Results (in
�DC"C

) of
wavelet based schemes.

� H ` H ! filter is used for wavelet
based schemes.

Data Set 3D-
WOC

3D-WC-
REC

3D-
WC

MLZC 3D
EZW

MR-
MRI

1.94 2.1 1.83 2.14 2.27

decorrelate 2D and 3D images. Correlation within the sub-
bands is exploited using fixed size lattices. These schemes
provide important functionalities required for teleradiology,
like progressive transmission, region of interest coding and
lossless compression. The performance of coding schemes
is further improved by incorporating context based coding
for the significance and sign maps. 2D and 3D contexts
are constructed using a mutual information based context
quantization algorithm. The achieved lossless compression
performance of the 3D scheme is comparable to those of
MLZC and 3D EZW algorithms [4].
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