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Abstract

In this paper we analyze the image retrieval problem in
presence of possible foreground disturbances. The fore-
ground may be irrelevant for the retrieval but it occludes
the background and hence reduces the retrieval accuracy.
We propose the use of a video as a query so that the mov-
ing foreground can be extracted. The segmented foreground
region is subsequently filled into increase the retrieval ac-
curacy. The performance of a retrieval scheme under fore-
ground disturbance is presented here.

1. Introduction

Use of low level visual features like color, texture, shape,
etc, have drawn much attention in the area of content based
image retrieval (CBIR). Numerous techniques about effi-
cient image indexing and retrieval from databases have been
proposed. Color is often considered as a major feature for
indexing because of its role in vision and in identification
and discrimination of objects. Color histogram [9] has been
shown to be robust to the changes in the object’s orienta-
tion, scale and viewing position. Authors in [4] proposed
the use of color correlogram instead of color histogram. In
order to include the local intensity variation, Jhanwar et al.
presented in [7] a translation and illumination invariant re-
trieval scheme using motif coocurence matrix. It uses an
optimal Peano scan to encode the image. Texture is also an
important image attribute which captures the local charac-
teristics of an image. Wavelet based representations have
been proposed in [8] for textural feature extraction and its
use while doing the texture image retrieval.

One can notice from the CBIR literature that several au-
thors have explored the usefulness of multiple features. In
[5] Jain and Vailaya propose to mix color and shape fea-
tures. The color histogram has been used to index the color
feature. Edge histograms and invariant moments have been
used for shape representation.

Earlier research on information retrieval is mostly based

on using an image as a query for image retrieval and a
video for video retrieval. When the user has a video rather
than an image as a query, the interest lies in retrieving im-
ages with contents similar to the background of the video.
This inspires us to come up with a meaningful and an effi-
cient CBIR system by removing possible foreground distur-
bances, if any, due to moving objects in the video. Often we
are interested in retrieving images similar to the background
in home video, but the background may not be available
completely as there could be some foreground objects in
the scene, which are occluding the background. Extracting
a frame (could be a key frame) from this video and using it
as the query image usually results in a very poor retrieval
precision due to the presence of the foreground object. Al-
though a great deal of work has been done during the past
many years on CBIR, to our knowledge, researchers have
not studied the effect of foreground disturbances in image
retrieval. In this paper we study the problem of image re-
trieval using a video by effectively removing the foreground
disturbances. The main contribution of this paper is the
investigation of foreground disturbances and how they af-
fect the image retrieval performance. We also contribute
towards minimizing the effect of foreground disturbances
by filling in the segmented foreground with the pixels of
the background scene using the successive frames of the
given video. For a given video query we segment the fore-
ground object by applying a foreground subtraction tech-
nique. Many algorithms have been proposed in the liter-
ature to segment the moving objects in a video sequence.
Davis et al. presented a non-parametric model called kernel
density estimation technique to separate the fore and back-
ground objects in [2]. We use the concept of change de-
tection principle to capture the temporal information of the
video. The temporal information over a set of video frames
is used to extract the foreground object. The foreground
subtraction is followed by gradually filling in, if possible the
subtracted region using the neighboring pixels of the back-
ground scenes from the successive frames. Subsequently
we obtain the completely filled in background scene.



(a) (b) (c) (d)
Figure 1. (a) Current frame (ID) of a query video (ψ ≈
0.30), (b) its initial object mask (c) final object mask (d)

background image after foreground masking.

In this study we consider the color and texture as the
feature for CBIR purposes. Color and texture similarities
are integrated with appropriate weights. Experimental re-
sults show that elimination of the disturbances due to fore-
ground improves the precision and recall rates significantly
with the further enhancement after filling in the segmented
foreground region.

2. Foreground subtraction

We exploit the background registration technique as dis-
cussed in [1] to segment the moving objects from the query
video. Basic idea of this algorithm is change detection. We
compute the frame difference mask by thresholding the dif-
ference between two consecutive input frames. Based on
the history of the frame difference masks (FDM) of several
frames, we construct background registration mask (BRM)
by considering pixels which are not moving for a long time.
Then we compute the background difference mask (BDM)
by comparing current input image and the background im-
age stored during the registration step. Using the BDM,
FDM, and BRM we construct the initial object mask shown
in fig 1(b). Subsequently, the initial object mask is filtered
to obtain the final object mask shown in fig 1(c). Because
of the filtering operations, the masked out region is typically
larger than the actual occluded region. For example, in fig
1(a) the foreground occupies about 30% of the total image
size while the masked region is about 34% of the total area
(see fig 1(d)).

3. Quantification of disturbance

In order to investigate and quantify the effects of fore-
ground clutters in CBIR, we studied the robustness of the
feature matching process during retrieval due to outliers
in the feature. The features generated from the occluding
region are the outliers. We analyze the sensitivity of the
matching process due to presence and exclusion of the oc-
cluding region. In addition, we quantify the gain in the
matching process when the segmented foreground clutter
is filled in using the background sprite. Let us denote an
image by I with the subscripts D and BF denoting the im-
age with foreground clutter, and after background filling
through sprite generation, respectively. Let f be an operator
that works on the image I and generates the corresponding

feature vector υ. Thus, υD and υBF are the corresponding
features extracted from ID and IBF , respectively.

Mathematically,

f : ID −→ υD ,

f : IBF −→ υBF ,

Let II be the ideal query image devoid of any foreground
disturbance ( see fig 4(d)), and υI be the corresponding fea-
ture set which would have been ideal for the CBIR appli-
cations. Similarly, let IF be the corresponding foreground
image that acts as a disturbance. Please note that we do not
restrict ourselves to having chosen a particular feature ex-
tractor f . Also, it may be noted that if one is able to do a
good background filling, then IBF ≈ II .

For a typical retrieval problem we compute the distance
of the feature υI to those of the images in the database. We
now want to quantify what would happen if one has to use
either υD or υBF as the feature instead of υI . In order to
make the problem mathematically tractable, let us assume
that the ideal query image and the foreground image caus-
ing disturbance are both statistically stationary random pro-
cesses so that the feature set υ is invariant to the choice of
location in the image. Let us assume that 0 ≤ ψ ≤ 1 is
the fraction of the size of the image II corrupted with fore-
ground disturbance.

Thus,

υD = f(ID) = ψυF + (1 − ψ)υI . (1)

Hence the similarity measure (assuming an Euclidean dis-
tance) with respect to the ideal image II is given by

dist(υD, υI) = ‖ ψυF + (1 − ψ)υI − υI ‖,

= ‖ ψυF − ψυI ‖ = ψ ‖ υF − υI ‖,
4
= ψM, (2)

where M is the distance between the foreground and the
background. Since the occluding foreground is quite dif-
ferent from the background, M is typically large. Thus,
depending on the amount of the background maskingψ, the
features of the query image deviates quite drastically from
those of the ideal background image.

Let us now see what happens to the similarity measure
for an arbitrary image IdB in the database. We may model
the image IdB as a mixture of two processes.

IdB = βIA + (1 − β)II , (3)

where IA is a statistical perturbation that makes IdB dif-
ferent from the ideal query image II , and 0 ≤ β ≤ 1



defines the mixing proportion. If β is small then the
database image is quite similar to the query image. As-
suming feature extractor to be linear operator we obtain
υdB = βυA + (1 − β)υI . Thus, the similarity measure
between the ideal query image and the database image is
given by

dist(υdB , υI) = ‖ βυA + (1 − β)υI − υI ‖,

= β ‖ υA − υI ‖ = βMo, (4)

where Mo is the distance between the ideal query image to
its similar image in the database and typically Mo � M. If
β is small, IdB is declared to be similar to the query image
II . If one now, instead, uses the foreground corrupted image
ID as the query, the similarity measure becomes

dist(υdB, υD) = ‖ βυA + (1 − β)υI − ψυF

−(1 − ψ)υI ‖,

= ‖ β(υA − υI) + ψ(υI − υF ) ‖,

≤ β ‖ υA − υI ‖ +ψ ‖ υF − υI ‖,

= βMo + ψM.

Using the fact that both 0 ≤ β, ψ ≤ 1 and Mo � M we
obtain

dist(υdB , υD)
<
∼ ψM, (5)

Thus we observe that if the foreground disturbance is al-
most negligible, i.e, ψ → 0 then one is, indeed, able to
retrieve similar images from the database. Else the distance
dist(υdB, υD) is quite large even for an image which an
user considers to be quite similar to the given query and we
end up retrieving irrelevant images. We perform some ex-
perimental analysis in quanifying the effect of ψ (the fore-
ground clutter) in the results section. If we are able to detect
the foreground clutter, we can mask the region and compute
the feature vector only for the background region. Thus, in
effect, we try to make ψ = 0 in equation 5. As expected,
the retrieval accuracy would be enhanced by masking out
the clutter region. However, there are two issues that tend
to reduce the achievable retrieval accuracy:
(i) Since a part of the image is masked out, the sample size
over which the feature υ is computed could be quite small
and, the image typically not being homogeneous, the com-
puted feature may be partly different from the true feature
vector υ.
(ii) If one is using image texture as the feature, where we
make use of the neighborhood properties of individual pix-
els, computation of the texture near the masking boundary
would be erroneous. For ψ being large, this pulls down the
accuracy quite significantly. If one is using a point opera-
tor such as color histogram as the feature, one does not en-
counter this problem. However, such features offer a poor
retrieval accuracy.

A better option to achieve a higher retrieval accuracy is
to perform a filling of the masked region through the gen-
eration of background sprite from the query video prior to
extracting the features. This process circumvents the prob-
lems discussed above and, thus, offers a much better re-
trieval performance. All these issues are illustrated through
experimental results in section 7. It may be mentioned here
that depending on the available video, it may not be always
possible to fill up the entire masked region.

4. Color as a feature

Color is considered as the most dominant and distiguin-
shing visual feature. In CBIR, the color histogram is the
most commonly used color descriptor. The color histogram
describes the global color distribution in an image. The ro-
tation and translation invariant properties of the color his-
togram motivates us to use the color histogram as one of the
featutre vectors in the feature space. As discussed in [5] we
extract the global color characteristics of an image by com-
puting three separate 1-D normalized histograms (R,G, and
B). As discussed in [5] we use Euclidean distance to com-
pute the color similarity dc(I,Q) between the query image
Q and the database image I .

5. Texture as a feature

Although color is a distinguishing visual attribute, two
images with different textures may have identical color his-
tograms. Color attribute may not be able to capture the com-
plete global characterstics of an image. It motivates us to
combine the texture with the color attribute. We capture
the texture characterstics of an image using the motif cooc-
curence matrix (MCM) as discussed in [7].

According to this algorithm every database image is di-
vided into 2 × 2 pixel grids. Each grid is replaced by an
optimum scan motif as discussed in [6], which results in the
formation of motif transformed image (MTI). We get MTI
of size N/2 × N/2, for an image of size N × N . We use
this transformed image to get the motif cooccurence matrix
which encodes the relationship between intensity variation
along specified scan directions in the image. The MCM of
the image itself acts as the texture feature vector (see [7] for
more details). These MCM feature vectors are subsequently
used for computing textural similarity dt(I,Q) between the
query and the database image.

6 Integration of color and texture attributes

Our experimental results show that a single image at-
tribute is not able to give good retrieval rates. In order to
improve the performance, we now need to integrate the re-
sults due to both color and texture similarities with appro-
priate weights. We define total similarity measure between
query image Q and database image I as,

dtotal = αdc + (1 − α)dt, (6)



Figure 2. Retrieved images in presence of foreground

disturbance (ψ ≈ 0.30) based on both color and texture

similarity.

Figure 3. Retrieved images after masking the jogger for

a scene with ψ ≈ 0.34.

where dc and dt are the respective color and textural simi-
larities and 0 ≤ α ≤ 1 is an appropriate weight based on
the relative importance of color and texture features.

7. Effect of disturbance

In order to investigate and quantify the effects of fore-
ground disturbance in CBIR, we conducted experiments on
a COREL image database of size 6000. We captured var-
ious video clips each one comprising approximately 250
frames. We extracted the foreground object using the back-
ground subtraction algorithm discussed in section 2. For
example fig 1 (a) shows a video clip where a person jogs
away from the camera. The cardinality of the foreground
mask changes as the person moves away from the camera.
For evaluation purposes one must select a frame which con-
tains the foreground of less cardinality in comparison with
the background. If the cardinality is quite large, the fea-

(a) (b) (c) (d)
Figure 4. Frames obtained during the process of filling in

the segmented region of the image in fig 1(d).

Figure 5. Retrieved images using a query obtained after

filling in the segmented region of the image in fig 1(d).

ture space will be badly affected by the foreground clutter
and the retrieval accuracy will suffer. We plan to study the
following in this paper:

• Effect of foreground occlusion in retrieval accuracy,

• Improvement achieved through the foreground sub-
traction, and

• Usefulness of foreground filling through video manip-
ulation.

In order to quantify the effects, we use the combined color
and texure features as given in equation 6 with α = 0.45 for
retrieval purposes.

In all experimental results the image displayed first is
the query. Ranking begins after the query image and goes
from left to right and top to bottom. We now plan to study
the effect of the amount of foreground occlusion (ψ) while
doing CBIR. In fig 1(a) jogger occupies ψ = 30% of the
natural background scene. Fig 2 shows the retrieved images
when this background occluded image is used as a query
image. We show the top 20 retrieved images that are similar
to the given query image. There are many irrelevant images
and even some of the relevant ones rank poorly during the
retrieval. It is very clear from the results that the retrieval
accuracy is badly affected by the foreground disturbances.

We now study the utility of the foreground removal pro-
cess while doing the CBIR. We consider the issue of mask-
ing out the background scene and its effect on the retrieval



accuracy. Here masking means that the darkened region is
not used while computing the color and textural features
(see figure 1(d)). Fig 3 shows retrieved images when this
is used as a query image. This query is devoid of the fore-
ground clutter, and the size of the background region over
which the feature υ computed is large when compared to
the clutter region. Therefore we obtain a good number of
relevant images. Compare this to the results given in fig 2
when the disturbance was not masked out. However, there
are two issues that tend to reduce the achievable retrieval
accuracy as disucssed in section 3.

In order to further enhance the accuracy we fill in the seg-
mented region using neighboring pixels of the background
scenes of the video frames as shown in figures 4(b),(c) and
(d). One may use the concept of sprite generation for this
purpose [3]. Subsequently we obtain the completely filled
background from the successive video frames (see fig 4(d)).
After background filling (see query image in fig 5) the back-
ground scene is efficiently described by the color and tex-
ture features. This further enhances the retrieval efficiency
of the CBIR scheme. Experimental results based on back-
ground filling are shown in figure 5. Based on these results
we justify that retrieval accuracy after background filling is
higher than the accuarcy obtained without filling (see figure
3).

We performed the retrieval evaluation in all the cases us-
ing the standard evaluation benchmarks such as precision
and the recall rates. Precision rate is defined as the fraction
of the retrieved images which are relevant. Recall is the
fraction of the relevant images which have been retrieved.
Figures 6 and 7 display the precision and recall diagrams
for with and without the removal of the disturbing region
for varying cardinality (size of the foreground). This shows
that there is a substantial reduction in both precision and
recall rates when the disturbance is not removed from the
query video. These plots also substantiate our claim that,
if possible, the foreground disturbance must be removed in
order to design a meaningful CBIR system. Figure 8(a) de-
scribes the behavior of recall rate for the increasing cardi-
nalities of the foreground. The recall curve indicates that
the rate decreases when the cardinality of foreground in-
creases. We also notice an improvement in the recall rate
after removing the disturbing region. We have shown this
for two query examples given earlier. Similarly figure 8(b)
displays the average recall rates for increasing amount of
filling of the segmented region. This curve shows a signifi-
cant improvement in the retrieval accuracy compared to the
rates obtained due to the background scene with or without
the foreground removal.

8. Conclusion

In this paper we presented a CBIR approach using the
video as a query to reduce the effect due to any possible

foreground disturbance in the scene. The use of video al-
lows us to determine what are the moving object(s) in the
scene and how it (they) can be segmented out. Hence the
features extracted from the foreground subtracted query im-
age are more meaningful and lead to a much improved accu-
racy in the CBIR system. In this study we have used a com-
bination of color and texture as the feature set, but one may
use any other feature set also. It may be noted that if one is
interested in retrieving images that match the foreground
and not the background, we can simply swap the defini-
tion of the foreground and background. We performed an
evaluation of the retrieval system both in presence after re-
moval of the foreground disturbance and also after filling in
the segmented foreground region. Performance evaluation
is done using standard benchmarks such as precision and
recall. We demonstrated the improvement in the retrieval
accuracy after foreground segmentation. Subsequently we
have also shown a further enhancement in the retrieval effi-
ciency by filling in the segmented foreground region(s).
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Figure 6. (a) Precision curves for the CBIR system in presence of varying levels (ψ) of the foreground disturbance, (b) the

same curve after the removal of foreground disturbance through masking.
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Figure 7. (a) Recall curves for the CBIR system in presence of the foreground disturbance, (b) the same curve after the removal

of foreground disturbance for various cardinalities.
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Figure 8. (a)Average recall rate with the increasing size of the clutter region for two different queries, (b) Average recall rate

with the increasing amount of filling of the segmented foreground region.


