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Abstract

In a single-chip digital color camera, a color filter array
(CFA) is used to obtain sampled spectral components (red,
green and blue) in an interleaved fashion. A color demo-
saicing operation is then carried out to determine the miss-
ing spectral components at every location. One of the prob-
lems in color demosaicing is that many of the interpolated
images are affected by colored artifacts near the edges cre-
ating false colors. The problem is more severe if the edges
are achromatic. In this paper we propose the use of median
filtering for suppressing this phenomenon. We have con-
sidered a set of existing interpolation algorithms and pre-
sented their performances in interpolating mosaiced pat-
terns. Next we have carried out median filtering of the
chrominance components of the demosaiced images. In
each case, the post-processing has remarkably improved the
quality of the reconstructions. The observations are verified
by both quantitative measures for expressing the quality of
reconstruction as well as by visual examinations of the re-
constructed images.

1. Introduction

For the last two decades, considerable attention has been
drawn to the problem of color demosaicing. Color demo-
saicing is required for the images captured by a single-
sensor camera using a color filter array (CFA). In the cap-
tured image (also called as mosaiced pattern) only sin-
gle spectral components are available. There are different
checkered patterns used for the purpose of filtering a single
spectral component. One of the most popular ones is the
widely used Bayer pattern shown in Figure 1.

As can be seen from Figure 1, at every pixel location of
the image only one of the three color components ( red (R),
green (G) or blue (B)) is available. Hence for a full color im-
age, it is necessary to compute the other two missing color
components at every pixel location. The operation for ob-
taining these missing color pixel values from the sampled
color pixel data is commonly known as color interpolation

� � � �

� � � �

� � � �

� � � �

Figure 1: The Bayer pattern.

or color demosaicing.
One of the major concerns of this interpolation task is to

keep the hardware cost as well as the computation time as
small as possible. This is to make the digital color imag-
ing (for both still and video images) cost-effective and tech-
nologically viable. Hence the methods usually employed
in practice are based on low storage requirement (storing
two or three rows of the captured image during scanning
and processing) and simple computations (such as averag-
ing [1], [23], copying of neighboring pixels [20], [21], [24],
convolving with a given mask [8], [16], decisions based on
simple comparisons [10], [5], [3] etc.). But the challenge is
to get the image quality as best as possible with the available
resources at hand.

Usually, in good interpolation techniques one of the fol-
lowing two principles are followed:

1. Interpolate with the pixels lying with the low gradient
directions [10],[5], and

2. Use the homogeneity of the cross-ratios of differ-
ent spectral components around a small neighborhood
[1],[4].

Other approaches combining the above two principles have
also been advanced. Kimmel [15] proposed one such al-
gorithm by weighting the cross-ratios with the gradient in-
formation around the neighborhood of a pixel. In a sim-
ilar approach Hur and Kang [11] also used the gradient
information for computing weighted averages of the cross



ratios and recovering the spectral component from it. In
[17] also, relatively faster algorithms combining the above
two principles are designed for interpolating color images.
The approaches are adopted for processing with two rows
or three rows of the mosaiced patterns. Accordingly, they
are called as Two-Line Algorithm (2L) and Three-Line Al-
gorithm (3L).

One of the problems associated with color interpolation
is the appearances of false colors or colored artifacts near
the edges. The problem gets more severe if the edges are
achromatic (of grey shades). A typical example is demon-
strated in Figure 2. The original image is shown in Figure
2(a). A mosaiced pattern following the Bayer CFA is gener-
ated from it and then interpolated using the bilinear interpo-
lation algorithm. The interpolated image is shown in Figure
2(b). One could see that the reconstructed image is severely
affected by colored artifacts in the walls of the house and
also in the white fencing.

      (a) Origina                         (b) BI

Figure 2: Examples of false color edges in the reconstructed
image

There are also a few efforts in suppressing the false
colors near the edges. Earlier Kimmel [15] had adopted
an iterative cross-ratio adjustment policy for mutually cor-
recting the spectral components. Similar policy has been
also adopted by Hur and Kang [11]. They have also used
the color edge information for localizing these corrections.
Kimmel [15] also carried out an inverse diffusion pro-
cess for the further enhancement of the images. There
are also efforts in using Markov Random Field process-
ing [6], [18] for enhancing the image quality. However,
all these processes are computationally intensive and also
expensive for hardware realizations. Besides there are also
efforts [22],[19] in using different types of color filter ar-
rays (CFAs) for suppressing false colored edges. In a recent

work Gunturk et. al. [9] have exploited interchannel cor-
relation of different spectral components for reconstructing
missing pixels through an iterative adjustment. They have
performed subband decomposition of different color planes
and used the higher subbands of those planes whose true
pixel values are available (e.g. CFA values at red and blue
masks) during the synthesis of non CFA green pixels. Simi-
larly, red and blue pixel values are reconstructed by synthe-
sising their low-low subband with higher subbands of inter-
polated green values. The process is repeated for a number
of times by projecting back ‘true’ pixel values of red (blue)
in the synthesised image. The algorithm (denoted by AP
in the Table 1) has provided interpolated images of excel-
lent quality and subsequently false colored artifacts are also
greatly reduced by this process.

In this work we have used median filtering for suppress-
ing false colors in the demosaiced images. Median filtering
[12] is a well known operation for removing shot or impul-
sive noises in an image. It has the good edge preserving
characteristics. In fact some of the interpolation algorithms
[7], [14] have used median filtering for estimating the miss-
ing spectral components. In this contribution we use it as a
post-processing operation for improving the image quality
and also suppressing false colored artifacts at the end. In-
terestingly, in our methods median filtering is applied glob-
ally at every pixel of the image. There is no requirement
of localizing the false color occurrences. This makes our
computation much simpler and faster than the existing ap-
proaches for false color removal. One may note also that in
hardware realization median filtering does not require any
floating point operation. Only comparators are necessary
for the computation. This makes it an attractive proposition
for VLSI implementation.

2. Color Demosaicing Algorithms

A variety of different algorithms have been advanced for
color demosaicing. Brief discussions on different ap-
proaches are available in [18], and [9]. In Table 1 we
present a summary of comparative performances of dif-
ferent techniques. In these comparisons various features
are considered such as quality of reconstruction of images,
quality of edge reconstruction, speed of computation and
buffer requirement. The algorithms are mostly identified by
acronyms as used in [18]. For evaluating quality of recon-
structions, we have used measures such as Composite-Peak-
Signal-to-Noise-Ratio (CPSNR) and Peak-Edge-Intensity-
to-Noise-Ratio (PEINR) defined as follows.

Let ���������
	��
����������������� be the spectral components of a
benchmark image of size ����� and ���� ������	��
��� �!�"���������
be the respective reconstructed spectral components. Then
CPSNR is defined as:



Table 1: Summary of relative performances

Algorithms Overall Image Edge Speed Number of
Reconstruction Reconstruction rows to be

stored in
the buffer

NN [20], [21] Poor Blurred Fast 2
2L [17] Good Fair Medium 2
BI (Bilinear) Fair Blurred Fast 3
ARBH [1] Fair Fair Fast 3
ECI [10], [5] Fair Good Fast 3
3L [17] Good Good Medium 3
EDCRAC [15] Excellent Good Slow 3
LCEC [13] Excellent Good Fast 5
VNGD [2] Excellent Good Slow 5
AP [9] Excellent Excellent Slow 5

����� � � � ��� log �	� � ��
�

 ��������������������� � �����  "!$#%�
�
� �����  &!'!'()�*,+ � (1)

Since CPSNR measures do not always reflect the qual-
ity of the images in terms of edge reconstructions, we have
also used another measure, PEINR (Peak-Edge-Intensity-
to-Noise-Ratio) for reflecting how edges are recovered in
the interpolated images. For defining PEINR we have used
the binary edge map of an image, which is computed from
the gradient image of the sampled array. In an edge map- ������	�� of an image, if the value at a pixel location is � it
shows the presence of edge pixels and otherwise the value
is � . Then, PEINR is defined as:

�/. �"� � � ��� log ���"� ��
�
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(2)
For some of the representative techniques as referred in

Table 1, CPSNR and PEINR values for some typical im-
ages are shown in Table 2 and Table 3 respectively. In
the tables, highest CPSNR and PEINR values (among these
techniques) are highlighted in bold figures. One may note
that the alternating projection technique[9] (denoted by AP)
outperforms other techniques in terms of quality of recon-
struction (as well as edge reconstructions) of images. How-
ever a computationally faster technique such as LCEC[13]
also provides good image reconstructons. Later it will be
shown that LCEC coupled with median filtering as a post
processing measure improves the quality of reconstruction
to a great extent and provides image qualities as good as
obtained using AP[9].

3. Median Filtering for Improving the Image Quality

We presume that false color appears due to the impul-
sive noises (on account of estimation errors) present in the

Table 2: CPSNR for Different Interpolation Techniques
Images BI EDCRAC LCEC VNGD AP

(dB) (dB) (dB) (dB) (dB)
Statue 27.85 31.59 32.21 34.08 36.47
Window 26.84 32.69 33.09 33.62 35.78
Pepper 25.45 25.04 27.24 26.94 28.13
Lighthouse 25.09 30.40 30.48 31.46 34.62
Sail 27.14 31.20 31.01 31.81 32.52

Table 3: PEINR for Different Interpolation Techniques
Images BI EDCRAC LCEC VNGD AP

(dB) (dB) (dB) (dB) (dB)
Statue 12.91 13.57 13.70 13.79 29.02
Window 15.17 24.18 24.09 21.13 29.69
Pepper 11.51 11.77 12.10 12.13 16.80
Lighthouse 19.61 17.35 20.53 20.04 19.57
Sail 18.33 23.74 24.60 22.95 27.95

chrominance components of the interpolated images. Hence
we have separated the chrominance components of the in-
terpolated image from its luminance component and sub-
jected them to the median filtering operations. For this we
have converted the interpolated image from the RGB space
to the YUV space. Here 6 represents the luminance or the
achromatic component. On the other hand, 7 and 8 rep-
resent the chrominance components. This helps in tackling
the appearances of false colors near the achromatic edges of
the color image. We have adopted a very simple strategy for
suppressing the false colors. We model false colors as noisy
samples of the 7 and 8 components. A typical case is pre-
sented in Figure 3 , where errors of reconstructions of 7 and8 components are shown. Visibly they occur in isolated re-
gions with sharp discontinuities. Hence, we modeled them
as ‘salt and pepper’ noise. We have reduced this noise in
our work using median filtering [12]. Finally, as the CFA
pixel values of the color channels are also modifed in this
process, we restore them back once again. The algorithm is
briefly described below.
Algorithm False Color Suppression using Median Filtering
Input: Demosaiced color image � in RGB color space using
any conventional color interpolation algorithm and mask-
size of the median filtering, say, 9 �:9 .
Output: Post-processed image ��; .
Begin

1. Convert � from RGB color space to YUV color space.
Let us call the components as 6 , 7 and 8 , where 6
represents the luminance component and 7 and 8 rep-
resent the chrominance components.

2. Apply median filtering to 7 using a mask of size 9 �9 . Let the filtered component be called as 7 ; .

3. Apply median filtering to 8 using a mask of size 9 �9 . Let the filtered component be called as 8 ; .
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Figure 3: Error of reconstruction in U and V components using LCEC technique

4. Convert 6 , 7 ; and 8 ; to the image �&; in the RGB
color space.

5. True pixels values of the respective spectral compo-
nents in the CFA are projected back to the interpolated
image.

End False Color Suppression using Median Filtering
We present here in Tables 4 and 5 the respective gains

in CPSNR and PEINR values in each method using median
filtering with a � ��� mask. One may observe that in many
cases there are significant improvements in the CPSNR and
PEINR values. For the first case, the gains in the CPSNR
values range from 0.11 dB to 3.07 dB. With respect to the
PEINR values there are substantial gains in many cases.
The gains are as high as more than 5 dB. Another inter-
esting aspect is that substantial gains in CPSNR values are
also obtained even for a good demosaicing technique (yield-
ing higher CPSNR values in usual circumstances) like the
LCEC method (see Table 2). A typical comparitive result is
presented in Figure 4. One may observe that false colored
edges are significantly reduced by using median filtering.
The reduction of spikes in the error plane of the chromatic
components are also abserved in Figure 5. It may be noted
that there is also improvement in the quality of reconstruc-
tions by AP, though the degree is smaller than others. This
also indicates the good false color suppression feature of
this algorithm.

3.1. Varying the mask-sizes of the median filtering
operations

We have also experimented with different mask-sizes for
the median filtering operations. It has been empirically ob-
served that in most cases, use of a mask of size 
 � 
 yields

           (a)                                         (b)

Figure 4: Reconstructed images: (a) LCEC and (b) LCEC
with median filtering with a mask-size of 3x3

the maximum CPSNR. Further increases in the sizes cause
reduction in the CPSNR values. In Tables 6 and 7, we
present the CPSNR and PEINR values obtained after using
median filtering with a 
 � 
 mask. In the tables absolute
values of the CPSNR and PEINR values (instead of gains)
are shown in order to highlight the maximum (mostly) what
could be achieved by these post-processings for different
conventional techniques. Interestingly in this case, the
LCEC method sometimes outperforms AP. Though mask
sizes higher than 
 � 
 yield relatively lower CPSNR val-
ues, it has been observed that in many cases false colored
edges are better suppressed by them. A typical example is
shown here in Figure 6. The reconstructed images (from
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Figure 5: Error of reconstruction in U and V components using LCEC technique with median filtering

Table 4: Gains in CPSNR for Different Interpolation
Techniques after median filtering of U and V compo-
nents (mask-size = 3x3)

Images BI EDCRAC LCEC VNGD AP
(dB) (dB) (dB) (dB) (dB)

Statue 2.96 2.24 3.07 2.49 1.26
Window 2.79 1.61 2.48 0.62 0.48
Pepper 1.80 2.42 1.34 1.05 0.11
Lighthouse 2.54 1.84 2.86 0.46 0.79
Sail 2.33 0.80 1.50 0.58 0.30

Table 5: Gains in PEINR for Different Interpolation
Techniques after median filtering of U and V compo-
nents (mask-size = 3x3)

Images BI EDCRAC LCEC VNGD AP
(dB) (dB) (dB) (dB) (dB)

Statue 4.36 5.44 5.7 5.42 0.65
Window 2.58 0.24 2.16 1.71 -0.12
Pepper 3.13 3.66 3.72 3.74 0.48
Lighthouse 2.15 3.43 2.55 2.10 0.92
Sail 1.51 1.51 2.26 1.09 0.14

the Lighthouse) with varying mask sizes using the LCEC
method are demonstrated in Figure 6. One can observe that
false colored edges are greatly reduced by the use of larger
masks. One may note however, there is a risk of blurring
the edges while using larger masks. It also increases the
computational cost.

4. Conclusion

One of the problems in color demosaicing is that many of
the interpolated images are affected by colored artifacts near
the edges. The problem is more severe if the edges are

(a )7x         (b)9x9

Figure 6: Reconstructed images (by LCEC) after
median filtering by larger masks

achromatic. In this paper we have demonstrated the use
of median filtering for suppressing this phenomenon. We
have considered a set of existing interpolation algorithms
and presented their performances in interpolating mosaiced
patterns. Next we have carried out median filtering of the
chrominance components of the demosaiced images. These
post-processings have remarkably improved the quality of
the reconstructions. The observations are verified by both
quantitative measures for expressing the quality of recon-
struction as well as by visual examinations of the recon-
structed images. The post-processing operations could sup-
press the false colored edges to a great extent.



Table 6: CPSNR for Different Interpolation Techniques
after median filtering (mask-size = 5x5) of U and V com-
ponents

Images BI EDCRAC LCEC VNGD AP
(dB) (dB) (dB) (dB) (dB)

Statue 31.89 34.49 36.37 37.16 38.00
Window 30.58 34.56 36.03 34.67 35.98
Pepper 27.57 27.75 28.74 28.01 28.19
Lighthouse 28.76 32.91 34.27 32.96 35.66
Sail 30.33 32.53 33.09 32.62 32.90

Table 7: PEINR for Different Interpolation Techniques
after median filtering (mask-size = 5x5 )of U and V com-
ponents

Images BI EDCRAC LCEC VNGD AP
(dB) (dB) (dB) (dB) (dB)

Statue 18.70 19.36 20.52 20.55 29.39
Window 18.13 24.95 27.11 23.15 29.40
Pepper 15.66 16.04 16.44 16.58 17.66
Lighthouse 22.19 21.24 23.21 22.43 20.71
Sail 21.06 25.54 27.30 24.79 28.08
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