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Abstract 

The application of the direction field method and the statistical 
textural analysis for crystallograms classification is proposed. 
As global features, we took the features the expert uses for the 
crystallogram-based classification of the eye pathology: unidi-
rectedness of the crystal rays; relative area of domains with 
clear-cut rays of the crystal; ray density; crystal transparency. 
As texture features, the instant characteristics of the second 
order distribution were taken. Experimental studies were 
conducted on the lachrymal fluid crystallograms. 

1. Introduction 

Pathological conditions cause multiple changes in the 
molecular composition of tissue and biological fluid. It 
is common practice to consider the fluid system as a 
medium for organism cells. One of techniques to reveal 
relations between the elements in the system is to trans-
fer the fluid from one phase state into another.  

 

Figure 1. Lachrymal fluid crystallization in the presence of 
the cuprous chloride 

Many authors believe that biological fluids [1] (blood, 
saliva, urine, and others) are indicative of metabolism 
impairment caused by the pathology in a human organ. 
The fluid composition reflects diverse metabolism 
changes found in the disordered organism. However, 
examination of the fluid composition commonly in-
volves only the biochemical index. Crystallographic 
studies (CS) are used as an integrated method that allows 
one to make implicit conclusions about the matter struc-
ture (Figure 1.). Some authors report that the CS of bio-
logical fluids can provide information that would allow a 
more accurate diagnostic of inflammatory, cancer, dys-
trophic, and allergic diseases. Due to simplicity and high 
sensitivity, the method has found its way to diagnostics. 

2. Formation of crystallogram global diagnostic 
features 

In the recent years, computerized methods for the bio-
medical image processing have become an important 
tool of scientific research and enhancement of early 
diagnostics of various diseases. In clinical practice, crys-
tallogram photographs are analyzed. It is very difficult, 
and sometimes even impossible, to single out visually 
the critical pathological signs. In this connection, digital 
methods for crystallogram image processing are em-
ployed. The advantage of computer-aided image analysis 
is its objectivity and feasibility to quantify the image. 

Our studies aim to develop methods for the automated 
analysis of crystallograms, investigate their diagnostical 
value, elaborate robust methods for the formalization of 
medical-diagnostic features, and generate quantitative 
estimates of pathology probability on the basis of the 
developed crystallogram classification features. As out-
put the diagnostic system produces an integrated esti-
mate of pathology probability derived from the crystal-
logram studies, which unites all classification criteria. 

According to the crystallographic analysis method 
used in the clinical practice, the normal eyefluid crystal-
logram is transparent and comprises thin, mostly unidi-
rectional, clear-cut rays originated from a common crys-
tallization center. Pathological crystals feature a great 
variety of directions and irregular contours. The patho-
logical crystal is opaque, with numerous ray fractures 
and bulges. A distinctive feature of pathology is the 
large density of crystal rays in some areas. 

The computerized system for crystallogram analysis 
is based on the classification of the eye fluid diagnostic 
features [2]. Thus, by analyzing the crystallograms the 
ophthalmologist earlier classified as those with and with-
out pathology, we were able to extract the global 
features the expert uses for the crystallogram-based 
classification of the eye pathology: unidirectedness of 
the crystal rays; relative area of domains with clear-cut 
rays of the crystal; ray density; and crystal transparency. 

The quasiperiodic structure is an important feature of 
the crystallogram images. Because of this, most classifi-
cation features we discuss are based on the notion of the 
complex direction field [3] derived from the function of 
image intensity ( ),I x y :  
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Figure 2. Characteristic eye fluid crystallogram images and the direction fields  

in normal (upper row) and pathological condition
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The direction field ( ),x yψ represents the tangent an-
gle to the level lines of the intensity function; the weight 
function ( ),w x y  has the meaning of the certainty 
(reliability) in the determination of the direction field  at 
a given point. To discover jumps in the direction field 
we use the squared modulus of gradient of the complex 
direction field:  

( ) ( ) ( ) ( )
2 2

2 , ,
, ,

x y x y
x y x y

x y
∂ψ ∂ψ

γ ψ
∂ ∂

= ∇ = + . (3) 

For the unit weight function, we get 
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The value of (3) averaged over the image gives the 
unidirectedness coefficient 1K .  
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The contour characteristic of the direction field of the 
first pathological crystallogram is depicted in Figure 2. 
In order to quantify the domains with the pronounced 
unidirectedness of lines, we use the coefficient of clear-
cut lines K2 defined as the ratio of the total area Sp of 
domains with the greatest values of the weight character-
istic of the direction field to the entire image area S :  
=2 /pK S S . (5) 

 

Quantitatively, the line density feature in the crystal-
logram is found to be based on the frequency properties 
of the image intensity function. As a classification crite-
rion, we take here the mean value of the ray density over 
the image domain D  wherein the weight function takes 
its greatest value and the value of spectral frequency is 
certain.  

The image intensity function is considered to be lo-
cally periodic and admitting the following approxima-
tion:  

( , ) sin( )x yI x y A x y Bω ω ϕ= + + + , (6) 

where ωx and ωy are the spatial frequencies to be esti-
mated. The coefficient of the line density K3  is defined 
as the mean value of the squared spatial frequency of the 
crystallogram intensity function:  
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The crystallogram transparency is characterized 
through the probability distribution of the intensity func-
tion. The “transparent” crystallogram features a positive 
shift of the mean value of intensity I  with respect to the 
midpoint = +max min( )/2cI I I  of the intensity range. 
This criterion can be quantified by the coefficient:  

4 ( ) /cK I I I= − . (8) 

Crystallogram’s probability of being pathology-free 
was used as a criterion for the independent classification 
by each feature. In particular, the probability is equal to 
one if the value of the criterion is greater than the thresh-
old of norm, and it is equal to zero if the criterion is 
smaller than the threshold of pathology. In the inter-
mediate range the dependence is linear. For each feature, 
the threshold of norm and pathology is chosen from the 
condition of the minimum classification error under the 
given criterion. The final estimate of the pathology 
probability depends on the partial estimates of the pa-
thology probabilities derived from each criterion. Ex-
perimental studies [2] have shown that the above-
considered features have different weights upon the 
crystallogram diagnostics. 



The weight coefficients for each criterion are taken to 
be proportional to the classification quality according to 
the given criterion (the frequency of coincidence of the 
obtained estimates with a priori ones). The classification 
results are shown in Table 1. In the table, the column 
Type indicates the a priori estimate of an image by the 
ophthalmologist (N - norm, P - pathology); P1 through 
P4 are the probabilities of norm according to the corre-
sponding classification criteria; R1, R2 are the resulting 
estimates of the probability of norm obtained via differ-
ent techniques for combining the classification criteria 
(R2 is for the optimal combination); C1 and C2 show 
whether the classification result corresponds to the a 
priori estimate, provided that threshold is 0.6. 

The global diagnostics on a series of samples (150 
crystallograms) has made it possible to extract from a 
variety of crystallograms the normal and pathological 
groups and quantify the classification features. The error 
in the pathology recognition in the crystallograms with 
quasiperiodic structures did not exceed 3-5%. A more 
detailed processing based on a series of local features 
will make it possible in the future to go to the differen-
tial diagnostics, thus diagnosing separate groups of dis-
eases: tumorous, dystrophic and inflammatory diseases. 
The objective of the next chapter is studies and formal-
ization of these diagnostics features. 

 

Table 1. The results of classification on the learning sample 

Image Field of directions Type P1 P2 P3 P4 R1 С1 R2 С2 

 

 

 

N 0.634 0.4 0.964 1 0.72 + 0.736 + 

  

N 1 1 0.44 0.294 0.72 + 0.783 + 

  

P 0 0 1 0 0.15 + 0.319 + 

  

N 0.863 1 0.476 0.824 0.83 + 0.751 + 

  

P 0.614 0.525 0.456 1 0.67 - 0.576 + 

 

3. Formation of crystallogram local textural 
diagnostic features 

The image texture is analyzed to provide a series of 
features for the classification of the eye fluid crystal-
lograms according to the familiar types of pathologies. 
The textural features were formed on the basis of human 
visual perception. The aim was to extract the informa-
tion, which a human interpreter associates connects with 
the texture. 

The different images present a particular texture for 
each class of the crystallograms that is a global represen-
tation of the crystal. A clinical  expert extracted seven 
main classes according to the severity of pathology. The 
first two classes form a norm group. The last five classes 
form a pathology group (see Figure 3). The crystal-
lograms available for this study came from 70 patients 
with different types of pathologies. The texture analysis 
was carried out on the images of eyefluid crystallograms 
using the second-order statistics of the gray levels. The 
gray-level-cooccurrence features [4] have proven to be 
very successful in the extraction of textural information.  
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Figure 3. Crystallogram  samples for the norm group (a-b) and for the pathology group (c-g) 

 
To describe the gray level cooccurrence (GLC) ma-

trix, we need the following definitions and symbols: D  
is the image field containing M N×  pixels, ,m nx is the 
gray value of pixel coordinates ( , )m n D∈ , G  is the 
number of gray levels in the image. The indicator-
function: 
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shows, whether two neighboring pixels at the distance 
d  have the determined levels. 

Normalized values of the GLC matrix are defined as 
, , ,( , ) ( , ) ( , )k l k l k l

i j

P i j C i j C i j= ∑∑ , (10) 
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The dimension of matrix ,k lP  is ×G G . The distinc-
tion between the opposite directions wasn’t taken into 
account. Therefore, the symmetrical matrices ,

s
k lP were 

generated as follows: ( )− −= +, , , 2s
k l k l k lP P P . 

For the present purposes we chose to avoid the char-
acterization of texture in a given direction. Each calcu-
lated matrix s

dP  is the average of four matrices calcu-
lated in the four directions (0°,45°,90° and 135°): 

,0 , 0, ,( ) / 4s s s s s
d d d d d d dP P P P P−= + + + . (12) 

A set of statistic features ( )= 1 6,...,d dF f f was calcu-

lated to summarize the GLC matrix. These features are 
textural features (Table 2). Variance describes the de-
gree of image homogeneity. Contrast describes the de-
gree of an image contrast. Inertia  describes the presence 
of sharp edges. Correlation describes the degree of sta-
tistical dependence of pixels. Shade describes the degree 
of equiprobable appearance of dark and light areas in the 
image (the shade near the objects, etc.). Entropy is the 
measure of image disorder.  

Table 2. The average nonnormalised values of 
each feature for major groups - norm and pathology 

Feature Norm 
Pathol
ogy 

Variance   
1 1 2

1
0 0
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G G
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− −
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The K-nearest neighbors (KNN) method was applied 
to a series of images. The classifier was developed using 
randomly selected 50% of the data set, with the testing 
performed with the remaining 50% of data. With the 
KNN method, each pattern of the training set is stored as 
a prototype. The class of a new pattern is directly ob-
tained from the computation of the distance between this 
pattern and each prototype in database. Among the KNN 
the majority class is affected to the unknown pattern.  



Table 3. The classification results of the crystallograms samples 

Class a b c d e f g 

Number of different samples 20 18 16 12 18 20 16 

Number of samples in sets 200 180 160 120 180 200 160 

Correctly classified 194 138 144 118 176 142 154 

Rate of correct classification (%) 97.0 76.7 90 98 97 71 96 

Group Norm Pathology 

Correctly classified 334 810 

Rate of correct classification (%) 87 98 
 

 
As the number of samples in each class was relatively 

small, the classification was conducted ten times with 
various randomly selected testing and training sets. The 
classification rates presented in Table 3 correspond to 
the average results obtained in the experiments [5]. 

This results indicate the probability that the method of 
textural analysis will be used to determine the class of 
the crystallogram, and hence to determine the rate and 
type of the pathology, with a relatively small probability 
of false miss errors. 

4. Conclusion 

Methods of the direction field and statistical textural 
analysis have been used to construct a classifier that 
allows the lachrymal fluid crystallogram type to be de-
termined. The fundamental possibility of using the tech-
nique for disease diagnostics has been proved. Some 
experiments yielded almost 95% accuracy. 

It is possible to construct an expert system to diag-
nose the pathology type of biological liquid crystal-
lograms. Additionally, the effectiveness and informa-
tiveness of the features were studied using the discrimi-
nant analysis method [6]. Since certain features are 
highly correlated with others the classification quality 
can be further improved. In future research, we propose 
to use a combination of textural and direction field 
analysis. 
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