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Abstract

This paper presents an evaluation of various unsharp
masking techniques for enhancement of Electron Mag-
netic Resonance (EMR) images. Both the linear and
non-linear unsharp masking techniques are tested for
contrast enhancement of continuous wave EMR im-
ages. In vivo EMR renal images as well as leg-tumor
images of a mouse are used as test images. Both visual
appearance as well as Signal to Noise Ratio (SNR) are
used as the metrics of evaluation. The results suggest
that adaptive unsharp masking technique performs well
for EMR image enhancement, compared to the other
approaches.

1. Introduction

Electron Magnetic Resonance Imaging (EMRI) is an
emerging biomedical imaging technology for direct de-
tection, characterization and quantification of free rad-
icals in chemical and biological systems [4, 11]. The
sensitivity of EMR spectral properties (hyperfine split-
ting, line width) to physiological parameters such as
pH, pO2 and viscosity makes EMRI a potentially pow-
erful functional imaging technique [9]. EMRI is akin
to MRI, but endogenous paramagnetic imaging agents
are to be administered for the acquisition of in vivo
EMR images. The imaging agents should be used in
lower concentration to avoid toxicity. This low dose
leads to weak EMR images. In addition, the EMR
imager also operates at lower frequencies to obtain suf-
ficient tissue penetration. The low frequency operation
also results in loss of sensitivity, leading to poor image
quality. Hence to develop EMR imaging modality as
a viable biomedical tool, novel image analysis methods
need to be developed and evaluated.

Generally, in biomedical imaging, the resolution
of individual anatomical structures is of prime im-
portance for diagnostic purposes and treatment plan-
ning [6]. Feature detection and image resolution can be
improved by sharpening some features by decreasing

the ambiguity between different regions of the image.
There have been several approaches to enhance Mag-
netic Resonance Images (MRI) without edge degrada-
tion [3, 2]. These methods are used to improve the
visual appearance of MR images. So far no attempt
has been made to evaluate filters for the enhancement
of EMR images. Hence in this paper, both linear and
nonlinear filters are investigated based on the unsharp
masking technique. A comparative evaluation is pre-
sented based on both visual appearance as well SNR of
the output images.

2. EMR Image Acquisition

Radio Frequency (RF) EMR imaging uses
both Fourier Transform (FT) and Continuous
Wave(CW)techniques [9, 1, 8]. The images used in
the present study were acquired using a RF CW EMR
imager. The EMR imager operates at a nominal
frequency of 300 MHz corresponding to a resonant
magnetic field of 106 G (10.6 mT) for g = 2 spin
systems. A detailed description of the 300 MHz imager
along with the sensitivity and imaging protocols are
furnished elsewhere [5].

A home-built parallel coil resonator (25 mm x 25
mm) was used for imaging. Two derivatives of symmet-
ric trityl based free radicals, abbreviated as Oxo63 and
Oxo31 were used as imaging agents [9]. Animal imag-
ing was performed following the guide for the care and
use of laboratory animals prepared by the institute of
laboratory animal resources, National Research Coun-
cil. A mixture of ketamine (90 mg/kg of body weight)
and xylazine (30 mg/kg of body weight) was used to
anesthetize (i.p. or i.v.) a C3H mouse that was placed
(lying on its back) in the parallel coil resonator. Af-
ter intravenous injection of the imaging agent (100-200
µL) of a 20 mM Oxo63 in Phosphate Buffer Solution
(PBS), the image data acquisition was initiated. For
the evaluation of the different filters, three sets of invivo
murine EMR images were taken. One set consisting a
sequence of temporal images was taken to depict the
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renal clearance of the imaging agent. The second one
used is a high resolution kidney image. The third one
showing a tumor induced in the leg of a mouse was also
used to test the system.

3. Theory

3.1. Linear Unsharp Masking (LUM)

Classic linear unsharp masking scheme shown in Figure
1, is often used to enhance the visual appearance of an
image. In this technique, a high pass filtered and and

Figure 1: Linear unsharp masking

scaled version of the input image is added with the
input image, to obtain the result [7]. This filter has
good sharpening effect but is very sensitive to noise
and leads to undesirable distortions.

3.2. Order Statistics Laplacian Filter (OSLF)

Different approaches have been made to address the
noise sensitivity of the LUM scheme. These approaches
are based on the use of nonlinear operators in the cor-
rection path. One such attempt uses order statistics
Laplacian filter to overcome the limitations of LUM.
Laplacian filter is an edge enhancing and sharpening
filter which can be implemented by F −∇2F , where F
is an image, and ∇2F is the Laplacian operator, given
by

∇2F (i, j) = L[A(i, j)− F (i, j)] (1)

Here L is the number of samples inside window cen-
tered at (i,j), A(i,j) is the average of the samples inside

the window and F(i,j) is the current pixel of the orig-
inal image. However, the Laplacian operator is also
sensitive to noise. To reduce the noise sensitivity, the
Laplacian is often used after some prefiltering. The or-
der statistics Laplacian operator reduces the noise am-
plification when the input disturbance is a zero mean
and a white Gaussian process. This OSLF operator,
OS∇2F , is given by

∇2F (i, j) = L[A(i, j)−M(i, j)] (2)

Here M(i,j) is the sample median of values inside the
window. The OS Laplacian is equal to the digital
Laplacian whenever the center value of the window
F(i,j) equals the median M(i,j) [10]. Even though
OSLF is not as sensitive to noise as LUM, its edge
enhancing characteristic is not very significant.

3.3.  Adaptive Unsharp Masking Technique (AUM)

Linear filtering techniques often reduce the amplitude
of noise fluctuations, but also degrade the sharp details
such as edges and lines. In medical image processing,
preservation of small structures and region boundaries
are very important. Image degradation and informa-
tion loss are not acceptable. Adaptive filtering tech-
niques satisfy the requirements of medical image pro-
cessing. One such adaptive technique that overcomes
the problem of OSLF is adaptive unsharp masking
(AUM) filtering scheme shown in Figure 2. AUM mod-

Figure 2: Adaptive unsharp masking

ifies the medium contrast details in the input image
more than the large contrast details to avoid overshoot
in the output image [7]. For implementation of AUM,
in the present work, the desired activity level and the



actual activity level were calculated and the difference
between them was made as minimum as possible. The
desired activity level of the image was estimated by
measuring the local variance of the image. The com-
putation of the local variance of the given image was
made over a 3x3 pixel block, using the equation,

vi(n,m) =
1
2

n+1∑

i=(n−1)

m+1∑

j=m−1

(x(i, j)− x(n,m))2 (3)

Here x(n,m) is the average grey level and x(i, j) is the
instantaneous grey level value. The classification of
the input image as belonging to smooth, medium con-
trast and high contrast regions was done based on the
computed local variance ranges. In the present study,
the classification was carried out based on the positive
thresholds denoted as τ1 and τ2. For all the three EMR
images, optimal values for τ1 and τ2 were found to be
70 and 190 respectively after testing with values rang-
ing from 0 to 250. The input signal was classified as
a smooth region if vi(n,m) < τ1, a medium contrast
area if τ1 ≤ vi(n, m) < τ2 and a high contrast area
otherwise [7]. The variable gain ‘α′ was selected based
on the above three levels. For EMR images, for the
smooth region, the gain was taken as unity, for medium
contrast area it was chosen as greater than 1 and for
high contrast area it was taken between the above two
values of ‘α′ (unity and greater than unity). The lo-
cal dynamics of the input image was calculated by the
corresponding 3 X 3 mask. The computed result was
multiplied with the already calculated variable gain ‘α′

to get the desired activity level gd(n, m), where,

gd(n,m) = α(n,m)gx(n,m) (4)

The actual activity level of the image was computed
by finding the local dynamics of the sum of the fil-
tered output and original image [7]. The filtered out-
puts were controlled by the scaling factors λx(n,m)
and λy(n,m) independently and are expressed by the
equation

y(n,m) = x() + λx() ∗ zx() + λy()zy() (5)

The controlled filtered outputs were added back to the
input image x(n,m). The cost function based on the
error which is the difference between the actual activity
level and the desired activity level was computed using
the equation,

J(n, m) = E[e2(n,m)] = E[(gd(n,m)− gy(n,m))2]
(6)

The adaptive algorithm was implemented recursively
to change the scaling vector such that J(n,m) was as

small as possible for the whole image. Gauss- Newton
algorithm was used to compute the scaling vector using

Λ(n, m + 1) = Λ(n,m)− µR−1(n,m) · ∂ ∂

∂Λ(n,m)
(7)

(e2(n,m)) = Λ(n,m) + 2µe(n,m)R−1(n,m)GT (n,m)
(8)

Here R(n,m) is an estimate of autocorrelation matrix
of the input vector G(n,m), and it was computed re-
cursively by

R(n, m) = (1− β)R(n,m− 1) + βG(n,m)GT (n, m)
(9)

The convergence parameter, β, a small positive step
size to control the speed of convergence of the adaptive
filter, was chosen after trial and error as 0.4 or 0.5 for
the EMR images.

4. System Implementation

The system was developed using C language for its
computational speed and portability. For reading the
input images and to view their corresponding output,
a well designed graphical user interface was developed.
For user friendliness, interactive facilities were included
to feed the parameters. The required filter for imple-
mentation could be selected independently. The overall
system was based on a modular architecture. All the
modules were linked with the front-end menu for user
friendliness. Resultant images (along with their SNR
values) could be readily viewed with their input to fa-
cilitate comparison.

5. Results and Discussion

The various filters described in this paper were evalu-
ated for their performance by selecting three sets of in
vivo murine EMR Images. Figure 3(a) presents renal
imaging of a mouse showing progressive redistribution
of the imaging agent, predominantly in the two kidneys
and the bladder.
Figure 4(a) shows a high resolution kidney image (three
times higher resolution than Figure 3(a). Figure 5(a)
shows EMR images of the legs of a mouse, with a tumor
in the right hind leg of the animal. Visual evaluation
was used in the first stage.

5.1. Visual Evaluation

5.1.1. Kidney and Bladder Images

Figure 3. presents the results of the enhancement of
different filters. The EMR image taken at 2.8 min af-



ter the administration of the imaging agent is shown
in Figure 3(a). The imaging agent localization in the
two kidneys and the bladder is shown. But the dis-
tribution of the spin probe is not clear in the image.
This is the input image to the three filters studied.
Figure 3(b) shows the output of LUM. A very slight
little enhancement is observable. The output of OSLF
shown in Figure 3(c) shows considerable enhancement
without background noise amplification. The uniform
areas are not disturbed. However, there is no signif-
icant enhancement in high detailed area, where more
edge information are present. The AUM filtered image
(Figure 3(d)) shows an improved differentiation of ad-
jacent regions of similar intensity characteristics. The
intensity variations are clearly visible and the contours
corresponding to the two kidneys and the bladder are
also seen clearly with high intensity variation.

Figure 3: Evaluation the filters for enhancement of re-
nal murine images. Output images of LUM (b), OSLF
(c) and AUM (d) are shown along with the input image
(a)

5.1.2. Kidney Images

Figure 4. shows the results of the experiments on
applying the different algorithms to the high resolu-
tion kidney images. While LUM filter (Figure 4(b))
shows very little improvement, OSLF filter (Figure
4(c)) shows considerable enhancement in the image
quality. Also the uniform areas not disturbed. But,
the fine details are not visible in the high detailed area.
The output of AUM, given in Figure 4(d), shows suf-

ficient noise smoothing in flat regions and simultane-
ously good sharpening in the detailed areas. The con-
tours of the organs are clearly delineated in the AUM
filtered image in comparison to the other two filters.

Figure 4: Enhancement of high resolution kidney EMR
images. Output images of LUM (b), OSLF (c) and
AUM (d) are shown along with the input image (a)

5.1.3. Murine Leg Tumor Images

Figure 5(a) shows 2D spatial EMR images of the imag-
ing agent distribution in the normal and tumor bear-
ing legs. Figure 5(b) shows the less enhanced image
of the LUM filter. Only blurred edges are seen in this
output. In Figure 5(c), the output of OSLF filter with
comparatively higher enhancement is shown. However,
the edges of the tumor are not clearly identified. The
enhanced images of AUM filter shows the highest per-
formance compared to the other filters. Thus the AUM
technique performs consistently better for all the three
EMR image data sets used for testing.

5.2. Calculation of Signal to Noise Ratio (SNR)

In addition to visual examination, the performance of
the filters were examined more deeply by computing
the SNR values. SNR is usually expressed in dB, in
terms of peak values for impulse noise and root-mean-
square values for random noise. In the present study, to
compute SNR, first a 3 X 3 pixel kernel was constructed
from the original image and its mean was calculated.



Figure 5: Enhancement of murine leg tumor EMR im-
age. Output images of LUM (b), OSLF (c) and AUM
(d) are shown along with the input image (a)

This mean value was subtracted from the central pixel
of the kernel. Finally, the variance was computed using
the expression,

V ar(x, y) =
1
9

n+1∑ m+1∑
[F (i, j)− F ′(x, y)]2 (10)

Here F’(x,y) is the mean value and F(i,j) is the central
pixel value.Table 1 gives the comparative SNR values
(in dB) for all the three filters.

EMRI INPUT LUM OSLF AUM
Kidneybladder 2.06 2.12 2.14 3.01

Kidney 2.03 2.05 2.41 3.11
Mu.Leg tumour 2.01 2.21 2.31 3.01

Table 1: Quantitative estimate of performance
evaluation as given by SNR (dB)

It is clearly seen from Table 1 that SNR value of
adaptive unsharp masking technique is higher com-
pared to the other filters.

6. Conclusion

Both linear and nonlinear unsharp masking techniques
are evaluated for their potential as a viable tool for
enhancement of EMR images. Both visual as well as
quantitative SNR computation methods are used as
metrics for evaluation. The adaptive unsharp mask-
ing technique shows good sharpening effects in detailed

areas without degrading the homogeneous areas of the
EMR images. It also enhances the medium contrast
details better than other filter techniques investigated.
Our study suggests the adaptive unsharp masking to
be a suitable technique for EMR image enhancement.
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