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Abstract

Diffusion has been used extensively in computer vision.
Most common applications of diffusion have been in low
level vision problems like segmentation and edge detection.
In this paper a novel application of the linear diffusion prin-
ciple is made for the estimation of depth using the properties
of the real aperture imaging system. The method uses two
defocused images of a scene and the lens parameter setting
as input and estimates the depth in the scene, and also gen-
erates the corresponding fully focused equivalent pin-hole
image. The algorithm described here also brings out the
equivalence of the two modalities, viz. depth from focus
and depth from defocus for structure recovery.

1. Introduction
The idea of diffusion has been one of the important

methodologies in the field of computer vision. It stems
largely from the idea of modeling the image (observation)
generation process using the heat equation. The pioneer-
ing work was done by Witkin in [14] where he proposed a
scale space for images based on smoothing of images using
a Gaussian kernel. Koenderink in [2] proved that this was
equivalent to solving the heat equation. This approach has
subsequently been widely used in low level vision tasks like
segmentation and edge detection.

In this paper we discuss how the linear diffusion princi-
ple can be used for depth estimation based on defocus as the
cue. In depth estimation using defocus as the cue, the basic
principle is to use the characteristics of the imaging system.
There have been two methodologies followed, one is to ob-
tain depth from focus [3] and the other to obtain depth from
defocus [1].

1.1. Depth from Focus

In the procedure for obtaining depth information from
focus, a sequence of images of a scene is obtained by con-
tinuously varying the distance between the lens and the im-
age detector [12]. Then for each pixel in the image its cor-
responding fully focused observation is estimated from the

sequence of images. From the fully focused image point the
distance of the corresponding object point is calculated us-
ing the standard lens equation 1/f = 1/u + 1/v where f
is the focal length, u is the distance of the object from the
lens plane and v is the distance of the focused image from
the lens plane.

1.2. Depth from Defocus

When a point light source is in focus, all light rays that
are radiated by the object point and intercepted by the lens,
converge at a point on the image plane. When the point
light source is not in focus, its image on the image plane is
not a point, but a circular patch resulting in a blur as can be
seen from fig (1). In depth from defocus, given two images
of a scene recorded with different camera settings, one ob-
tains estimates of the blur at each point [1]. Subsequently,
by using an estimate of the blur, one can recover the depth
information in the scene with the knowledge of the lens pa-
rameters.
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Figure 1. Illustration of image formation in a convex lens.

In this paper we show that, given two observations ob-
tained by two sets of lens parameters, as is commonly em-
ployed in depth from defocus technique, using the diffusion
equation we can generate the entire set of images in the de-
focus space of the input images. The defocus space of a
scene refers to the continuous space of all possible observa-
tions obtainable by varying the lens parameters in between
those two lens settings. This concept is further elucidated in
section 3.3. In this method, the defocus blur is not explicitly



calculated as it is done in depth from defocus techniques.
Instead, by using diffusion, for each pixel we can obtain
the corresponding fully focused observation in the defocus
space. Then using that observation and the corresponding
virtual lens parameters we can recover the depth informa-
tion from the lens equation. As a by-product, we also obtain
the fully focused pin-hole image from two defocused ob-
servation. The diffusion process simulates the depth from
focus technique by generating images in the defocus space
of the observation. Many separate observations as required
for the depth from focus technique are no longer required.
Infact, using the diffusion technique, the two modalities of
estimation of depth can be considered to be equivalent. This
is discussed further in section 3.4.

In the next section we give a brief overview of the related
work done. In section 3 we outline the theoretical basis for
the formation of the defocus image space of an observation
based on the diffusion process. In section 4 we present the
basic algorithm for depth estimation using diffusion. In sec-
tion 5 we analyse the procedure and consider the practical
issues involved in the implementation of this method. In
section 6 we present the experimental results obtained. We
conclude the paper in section 7.

2. Related Work
2.1. Depth From Focus

There are a number of papers in the literature which ad-
dress the problem of obtaining depth information from fo-
cus. This includes work by Nayar and Nakagawa [7], and
work by Subbarao and Choi [12]. The basic method fol-
lowed has been to obtain different focus levels by adjusting
the camera parameters, i.e. either the lens to image plane
distance v, the focal length f or the aperture radius r. The
methods involve obtaining many observations for the var-
ious camera parameters and estimating the focus measure
using various criterion functions. Krotkov [3] has exper-
imentally evaluated several such criterion function includ-
ing the Laplacian and Teningrad operators. The fundamen-
tal weakness of this method is, however, the time required
for image acquisition. In practice about ten or even more
images are required to estimate the depth of a scene for a
reasonable level of accuracy.

2.2. Depth From Defocus

The research on depth from defocus (DFD) was intro-
duced by Pentland [9]. He identified the problem of DFD
as an estimation of linear space variant blur. The defo-
cus parameter was recovered using the deconvolution in the
frequency domain. However, the method depended on the
availability of a perfectly focused image of the scene as one
of the observations. Subbarao [11] proposed a more gen-
eral method in which he removed the constraint of one im-
age being formed with the pinhole aperture. In [1], the

authors have posed DFD as a problem of regularized space
variant blur identification. They provide various methods
for solving this problem by modeling the depth/image as an
Markov Random Field (MRF). More work in this area has
been reported by Favaro et al. [8].

2.3. Heat Equation and Diffusion

In this paper we use the technique of diffusion for syn-
thesizing new virtual observations in the defocus space. The
idea of diffusion can be traced to that of scale space fil-
tering by Witkin [14]. Koenderink [2] showed that this is
equivalent to solving the heat equation. This scale space
approach was extended by Perona and Malik in their land-
mark paper [10] where they proposed a nonlinear scale
space model, aimed at preserving important features such
as edges. The model changes its behaviour based on the
conduction coefficient associated in a region of an image
and achieves forward diffusion in the interior region and at
the boundaries it acts in the opposite direction. In general
the inverse diffusion approach can be thought of as revers-
ing the heat equation. This reverse heat equation is however
ill-posed and there has been a substantial amount of work
done for stabilizing the reverse heat equation. Rudin, Osher
and Fatemi in [4] introduced the “shock filter” where they
proposed a pseudoinverse, where the inverse diffusion prop-
agation term is tuned by the sign of the laplacian. There has
been a lot of research done along similar lines where vari-
ous nonlinear inverse diffusion models have been proposed.
In linear scale space theory, recently interesting work has
been done by Lindeberg [5], where he provides a theoretical
analysis of the linear scale space theory and also observes
that Gaussian and higher orders of the Gaussian kernel are
the only admissible kernels based on the admissibility con-
ditions for linear scale space.

3. Formation of Defocus Space

3.1. Diffusion Process

Consider the classical equation for the isotropic diffusion
of heat which is given by the following partial differential
equation:

∂I(x; t)

∂t
= a(

∂2I(x; t)

∂x2
) (1)

Here the constant a is the thermometric conductivity or dif-
fusivity [13]. The equation above describes how heat dif-
fuses over a surface, given an initial temperature distribu-
tion with time. It is assumed here that the diffusion of heat is
uniform in all directions. Note that the variable x in eqn(1)
represents the space and can be considered a 2D function.
Consider that I(x, t = 0) is an image. The solution of the
heat equation can be obtained in terms of convolution of the
image with a temporally evolving Gaussian kernel [6]. This
is known as the source solution for the heat equation [13]



and is given by σ2 = 2at where σ denotes the spread of
the Gaussian kernel used through out in this paper. As the
image is progressively convolved with a Gaussian kernel, it
gets increasingly more blurred thereby representing the im-
age information at a different scale. Note that as t → ∞ this
corresponds to a fully diffused image. This is the basic idea
underlying scale space analysis. Also note that the process
is not defined for t < 0, a fact that will be utilized later to
define the extended defocus space.

3.2. Basic Model of Defocus
Consider the image formation process in a real aperture

camera employing a thin lens [1]. When a point light source
is in focus, all light rays that are radiated from the object
point and intercepted by the lens converge at a point on the
image plane. When the point is not in focus, its image on
the image plane is no longer a point but a circular patch of
radius that defines the amount of defocus associated with
the depth of the point in the scene. It can be shown that

σ = κrv(
1

F
−

1

v
−

1

Z
) (2)

where r is the radius of the aperture, v is the lens-to-
image plane distance, F is the focal length of the lens, Z
is the depth at that point and κ is a camera constant that
depends on the sampling resolution on the image plane. Let
I(x, y) be the pin-hole image of the scene. From the eqn(2)
we note that C = (r, F, v) defines the camera parameters
each of which may be changed to effect a different amount
of defocus blur for a fixed depth.

The depth related defocus process is linear but not space
invariant. Assuming a diffraction-limited lens system and a
constant depth in the scene (this assumption will be relaxed
at a later stage), the point spread function of the camera
system at a point (x, y) may be approximately modeled as
a circularly symmetric 2-D Gaussian function [1]:

h(x, y) =
1

2πσ2
exp(−

x2 + y2

2σ2
) (3)

where the blur parameter σ is obtained from eqn(2). As-
suming the depth to be constant everywhere, the observed
defocussed image E(x, y) is given by

E(x, y) = I(x, y) ∗ h(x, y). (4)

This equation can be directly related to the solution of the
diffusion equation in terms of the Gaussian as discussed in
section 3.1. The real aperture imaging can thus be thought
of as providing a real world example of scale space theory.
The eqn(4) can be represented by taking its Fourier trans-
form. Denoting the Fourier transform of a function f(x, y)

by f̂(ωx, ωy) we obtain
Ê(ωx, ωy) = Î(ωx, ωy)ĥ(ωx, ωy)

= Î(ωx, ωy)exp(−
σ2(ω2

x
+ ω2

y
)

2
) (5)

3.3. Defocus Space

For a given scene, one can have two defocused obser-
vations E1 and E2 corresponding to two different camera
parameter settings C1 and C2, such that the resulting blur
parameters are σ1 and σ2, assuming σ1 > σ2 without loss
of generality. For the two observations E1 and E2, a defo-
cus space can be defined.
Definition 1: Defocus space

The defocus space is defined to be the set of all
possible observations E for a given scene gener-
ated by varying the blur σ as a combination of
the associated blur parameter σ1 and σ2 in the
two observations E1 and E2 respectively, by the
following relation

σ2 = ασ2
1 + (1 − α)σ2

2 (6)

for all values of 0 ≤ α ≤ 1.
This is equivalent to generating I(x, y, t) for t1 ≤ t ≤ t2

given the states I(x, y, t1) and I(x, y, t2) at two specified
time instants t1 and t2 in the heat diffusion eqn(1). Substi-
tuting eqn(6) in eqn(5) we obtain:

Ê(ωx, ωy) = Î(ωx, ωy)

exp[−
1

2
(ασ2

1 + (1 − α)σ2
2)(ω2

x
+ ω2

y
)]

= {Î(ωx, ωy)exp[−
σ2

1(ω2
x

+ ω2
y
)

2
]}α

{Î(ωx, ωy)exp[−
σ2

2(ω2
x

+ ω2
y
)

2
]}1−α

or Ê(ωx, ωy) = Êα

1 (ωx, ωy)Ê
(1−α)
2 (ωx, ωy). (7)

The relation given in eqn(7) is equivalent to the notion of
scale space as formed by the diffusion equation. This can
be noticed as eqn(7) can be thought of as convolving the
image I(x, y) with a time varying Gaussian kernel. This is
because convolving a Gaussian function with another Gaus-
sian function always results in a Gaussian function. The
eqn(7) effectively reduces to convolving the original image
I(x, y) with a Gaussian kernel which varies with time (in
this case α) according to the relation given in eqn(6).

The defocus blur σ could be present physically due to
any of the following camera parameters-aperture, the lens
to image plane distance, the focal length or even a combi-
nation of these, as shown in eqn(2). A monotonic variation
in any of the lens parameters can generally result in a non-
monotonic variation in the blur (for instance as v is changed
from an initial value, σ reduces, becomes zero and then sub-
sequently increases), signifying both sides of the defocus
cone (see Fig.2 for illustration). The diffusion based defo-
cus space generation process however generates the blur in
a monotonic manner, i.e we are restricted to one side of the



defocus cone. By continuously varying the parameter α, we
can generate any virtual observation for defocus setting ly-
ing between the lines AB and CD in Fig.2 using the eqn(7).
The defocus space thus consists of all possible observations
of the defocus blur σ2

1 ≤ σ2 ≤ σ2
2 .

3.4. Equivalence of DFF and DFD

Corresponding to the notion of continuous defocus space
as introduced in the previous section, a practical counterpart
of this defocus space would be a sampled defocus space.
This corresponds to generating the defocus space for dis-
crete values of α between 0 and 1. In Fig.2, the lines corre-
sponding to A1B1,A2B2, ...AnBn may represent one such
possible set of sampled defocus space. The sampled defo-
cus space generated for an image is similar to the physically
obtained focused image space described in [12].

So far we have considered a restricted range of α be-
tween [0, 1]. Now we relax this condition and something
interesting happens. If the values of α beyond the range
[0, 1] is considered then the defocus space generated is the
extended defocus space.
Definition 2: Extended defocus space

The extended defocus space is defined to be the set
of all possible observations E for a given scene
generated by varying the blur σ as a combination
of the associated blur parameter σ1 and σ2 in the
two observations E1 and E2 respectively, by the
following relation

σ2 = ασ2
1 + (1 − α)σ2

2 (8)

for all values of β ≤ α ≤ ∞.

Here the value of β is the value of α such that σ2 = 0 in
eqn(8), i.e. resulting in a fully focused observation. This
can be obtained from the diffusion equation since corre-
sponding to the image I(x, y, t) with t → ∞ we can ob-
tain an observation E(x, y) with α → ∞. This represents
the fully diffused image. Similarly for each point there ex-
ists a value α = β < 0 corresponding to t = 0. This
corresponds to a fully focused observation, i.e. σ2 = 0.
Thus the extended defocus space is defined for the range
α ∈ [β,∞). In the range α = [β, 0] the process, instead
of being diffusion becomes an inverse diffusion. Beyond
this range, the defocus space is undefined since one cannot
have the blur σ2 < 0. This is illustrated in the Fig.2. Depth
from defocus(DFD) methodology estimates the space vari-
ant blur whereas depth from focus (DFF) methodology es-
timates the focused image point. It is possible to use the
techniques in DFD methodology to estimate the space vari-
ant blur using just two observations, whereas DFF requires
many samples to estimate the fully focused point. Here as
we have shown, it is possible to generate the extended defo-
cus space for the image using just two observations. Thus

both the techniques can be considered fundamentally equiv-
alent, rendering the need for multiple samples to be redun-
dant. This diffusion based process thus provides an equiv-
alent means for estimating the depth from the known lens
parameters using either depth from defocus or depth from
focus.

A1, A2, ...An   defocus space
C

DB

Defocus Cone

Fully focused point

σ12
2σ2

    A

B1, B2, ...Bn Extended Defocus Space

Figure 2. Illustration of the concept of defocus space for
a particular scene

4. Algorithm for Depth Estimation

The derivation of eqn(7) is based on the assumption of
constant depth. When there is depth variation in the scene,
eqn(7) is no longer valid as the blurring process becomes
shift variant, implying a non-homogeneous diffusion pro-
cess. This corresponds to the following diffusion equation

∂I(x, y; t)

∂t
= a(x, y)(

∂2I(x, y; t)

∂x2
+

∂2I(x, y; t)

∂y2
) (9)

Here a is no longer a constant but is now a function
a(x, y) and this is handled by forming a small MxM win-
dow about a point over which the depth can be assumed
to be constant as is done commonly in all literaure. Us-
ing this modification the defocus space for a scene can be
created locally even in the depth varying case. The depth
estimation is done by obtaining the fully focused point for
each image. The process of creating the defocus space is a
monotonic process. As α varies, the characteristics of the
process changes from diffusion to inverse diffusion and the
deblurring of the defocused observations happen. In obtain-
ing the fully focused image the value of α is not restricted to
lie between 0 and 1, rather we go for values of α < 0. The
characteristic of the convolution changes from a low pass
filter to a high pass filter for α < β. The defocus process
has to be stopped when the fully focused point is reached.
This stopping point is estimated empirically from the vir-
tually created observations using a band pass filter, similar
to the way it is done in DFF methods, albeit with a differ-
ence as in DFF various kinds of high pass filters are used



since the observations in DFF after the fully focused obser-
vation are again blurred observations. The various steps of
the algorithm are as follows:

1. Divide the observed images E1 and E2 into overlap-
ping MxM windowed representations.

2. Obtain the FFT of the corresponding windows in E1

and E2.

3. Synthesize a sample of the defocus space correspond-
ing to a particular value of α ∈ [β, 0) for each window
using eqn(7). Note that β is unknown as the value of β
would give us the depth.

4. Estimate the amount of defocus using a defocus crite-
rion function which is essentially a band pass filter and
detect whether a fully focused point is reached.

5. Using the corresponding virtual lens parameters, cal-
culate the value of depth at the point.

This algorithm is sequentially executed for all pixels in
the image till the corresponding pin-hole observation of the
scene is obtained and a dense depth map is generated.

5. Computational Difficulties
The algorithm uses the windowed Fourier transform. In

some cases, especially, where the grey level variance in the
window values is very low, signifying a textureless scene,
there might be a problem as the spectral components may
be nearly 0. When the value of α goes beyond 0 and 1
range, then potentially a division by zero error can occur in
eqn(7). This can be avoided by marking such windows as
being out of computation. Mathematically it signifies that
the depth cannot be estimated for homogeneous regions.

Another factor which adversely affects the method is its
sensitivity to quantization error. Generally, 8 bit quantiza-
tion of the scene results in very noisy virtual observations.
This is because the defocus space generating process acts as
a high pass filter when we take α < 0. Further the inverse
diffusion process is inherently unstable and the quantization
aggravates the unstability. Practical implementation sug-
gests the use of 16 bit representation of photometric data.

Generation of virtual observations using eqn(7) on local
windows may consume quite a bit of computation. This
is more due to the fact that a finer sampling of the ex-
tended defocus space would lead to a better accuracy in
depth estimate. However, to obtain better estimates of the
fully focused points efficiently, a hierarchical virtual sam-
pling technique is used wherein, using the algorithm defined
earlier a value of α is quickly estimated using coarser dis-
crete steps in the value of α in the range [β, 0]. Then a fur-
ther dense sampling is performed in a small neighborhood ε
around the current best estimate of α, i.e. α ∈ [α− ε, α+ ε]
and the estimate of α is refined in a hierarchical manner.

This is computationally more efficient and offers a tradeoff
between time and accuracy.

6. Results
The algorithm has been tested with real as well as sim-

ulated data. In the case of real data, there is a substantial
amount of noise in the structure recovered with the depth
estimated recovered being irregular. This is mainly because
the real world data is in eight bit form and the resultant
quantization error plays a major role in the shift in the re-
sult. However, the overall structure recovered resembles the
general structure of the scene. In a similar way, the corre-
sponding deblurred observation obtained, in general, does
not represent the actual pin-hole image, but the result is def-
initely better focused and more deblurred than the observa-
tions given as input to the algorithm. The results obtained
with synthetic data can be observed to be better than that
obtained with real data due to use of 16 bit representation.

In Fig.3, two images of a ball are taken with varying lens
to image plane distances. In the experimental setup the base
was at a distance of 117 cms. from the camera. The point
on the ball nearest to the camera was at 121.8 cms. while
the points lying on the occluding boundary of the ball were
at a distance of 132.3 cms. from the camera. The change in
the lens-to-image plane distance introduces a small amount
of change in magnification. This was taken into account and
corrected. The Fig.3.c shows the dense depth map estimated
with the darker portions corresponding to nearer distances
and the brighter regions corresponding to further distances.
The darkest points (grey level 0) refer to the homogeneous
region for which the depth cannot be estimated as explained
in section 5. The Fig.3.d shows the deblurred image ob-
tained.

The second experimental setup was the “blocks world”
where three blocks were arranged at different depths, the
nearest one at a distance of 73 cms., another at 82.7 cms.
and the farthest block at 96.6 cms. Again images were taken
with varying lens to image plane distances to obtain differ-
ent amont of defocus in different observations. The Fig.4.c
shows the dense depth map estimated in this case and the
Fig.4.d shows the deblurred image obtained.

The Fig.5 shows a test data where a textured image is
synthetically blurred with continuously varying Gaussian
functions. The variance of the Gaussian function was in-
creased in a ramp like manner. The variance for the first
image E1 varies from 2 to 7 and for the second image E2

the variance varies from 1 to 3. The Fig.5.c shows the cor-
responding dense depth map and the Fig.5.d shows the cor-
responding deblurred image. The left to right variation in
depth is clearly visible.

The Fig.6 also shows a synthetic test data where a tex-
tured image is blurred with a continuously varying Gaus-
sian functions. However, here the variance of the Gaus-
sian function was increased in a radially outward manner.



(a) (b) (c) (d)

Figure 3. Ball Image: (a,b) Two observations with the
right less blurred, (c,d) recovered structure and the de-
blurred image.

(a) (b) (c) (d)

Figure 4. Block World with two observations (a) The fur-
thest block is more in focus, (b)the nearest block is more
in focus, (c,d) recovered structure and the deblurred im-
age.

The Fig.6.c shows the corresponding dense depth map and
the Fig.6.d shows the corresponding deblurred image. Once
again the depth variation is quite clear from the plot.

The results appear to be noisy as the linear diffusion pro-
cess suffers from instability if the defocus space is extended
into the process corresponding to inverse diffusion. This
method however presents a basis for understanding depth
from focus/defocus in the light of the diffusion equation and
is thus important in its own merit.

7. Conclusion

For a given scene in the real world, we have defined a
defocus space which is a virtual space of all observations
based on the properties of a real aperture imaging system.
A method for generating the defocus space based on the dif-
fusion equation has been presented. We have also presented
an algorithm for recovering structure based on the defocus
space. An interesting outcome of this work is that it brings
out the equivalence of the depth from focus and depth from
defocus modalities for depth estimation. This algorithm has
been tested with real as well as synthetic images. A possible
extension of the current algorithm is to incorporate a facet
based modeling of the depth of the scene while calculating
the diffusion coefficient. It is also possible to consider mul-
tiple exposures of the scene as is commonly done in the DFF
process and this is expected to improve the results. We are
also exploring the suitability of regularizing the diffusion
process in order to obtain a smooth depth map.

(a) (b) (c) (d)

Figure 5. Ramp blur: (a,b) Two synthetically blurred ob-
servations, (c) recovered structure, and the (d) deblurred
image.

(a) (b) (c) (d)

Figure 6. Radial blur: (a,b) Two simulated observations,
(c,d) recovered structure and the deblurred image.
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