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Abstract

This paper introduces a novel approach for automatic de-
tection of a type of diffuse lung pattern, known as hon-
eycombing, from high resolution computed tomography
(HRCT) scans of the lung. The algorithm, which is based on
frequency spectrum analysis of the HRCT image, assesses
and combines outputs from a pre-defined Gabor filter bank
to form a preliminary lesion detection mask. Several mor-
phological filters are then employed to remove noise from
the detection mask. The algorithm is applied to a total
of 352 images and the outputs are validated against lung
HRCT images marked by 2 qualified radiologists. The al-
gorithm achieved a sensitivity of 87.5% and a specificity of
84.4%, which compares favorably with other approaches.

1. Introduction

Computed tomography (CT) scans, alternatively known
as CAT scans, are computer rendered x-ray scans which
provide a cross-sectional view of the screened object.
They are a standard diagnosis technique for lung diseases.
Examination of CT images is performed by qualified
radiologists. However, this is a time consuming and weary
task as a continuous scan of the lung can produces up to
500 – 600 images for an individual patient. As most of the
slices are similar in appearance, the task of diagnosis can
be tedious and can potentially reduce diagnostic accuracy.
To improve the efficiency, automated disease detection
algorithms may be developed. In this paper, we tackled
a specific type of lung lesion known as honeycombing
which belongs to the diffuse lung opacity disease category.
Honeycombing refers to the characteristic appearance of
pulmonary fibrosis.

Diffuse opacity lung diseases, as the name suggests, spread
to large portions of the lung and form distinctive patterns.
Such lesions are often studied using texture analysis meth-
ods, a classical research area in image processing. Amongst

the entire diffuse opacity lung disease family, honeycomb-
ing is by and large the hardest to detect automatically.
This has been shown separately by Uppaluri et al [1] and
Doi et al [2]. They developed multi-class diffuse lung
disease classification systems using different approaches
and reported that honeycombing is the least detectable
pattern in both studies. Figure 1 shows a honeycombing
region in contrast to normal lung tissue.

Figure 1: Top part of the lung on the left is affected by
honeycombing while the right image shows a normal lung.

Most of the currently available honeycombing detection al-
gorithms are based on statistical learning [1], [2]. In this
paper, we take a different approach and base our algorithm
on frequency spectrum analysis. In particular, Gabor fil-
ters are employed to assist the frequency extraction process.
Some of the advantages of our algorithm including fast pro-
cessing time with each slice taking only around 20 seconds
to process on a standard home personal computer. Also,
no training is needed for this algorithm, in contrast to sta-
tistical learning machines which are notorious for their long
and exhausting training phase. Our experiments have shown
that this approach yields comparative results (if not better)
to statistical methods.



2. Related Work

Mitani et al [3] performed texture classification on diseased
lung patterns. The aim was to classify different disease
patterns from images containing only homogeneous lesion
textures. The team created their test sets by manually
cutting the diseased regions out from CT images which
formed a new image with block size128 × 128. The
textural images were divided into 5 classes, namely
reticular, ground glass, nodular, consolidation and normal
lung tissue. Textural features were extracted using an
intensity histogram and a fixed scale Gabor filter bank with
4 orientations. They reported that the usage of intensity
histogram together with Gabor filtered output dramatically
improved the classification results compared to only Gabor
filtered outputs and they achieved a classification accuracy
of 90%.

Doi et al [2] developed an automated computerized method
of detecting diffuse lung opacity diseases. Their data set
contained ground glass, honeycombing, reticular and linear
opacity, consolidation, emphysema and nodular opacity.
Doi’s team first employed an algorithm to segment the
lung region out from the image and divide it into16 × 16
blocks. Twenty or more statistical features were extracted
from each block and a Bayesian classifier is adopted to
classify between normal lung tissue and different opacities.
A sensitivity of 89.7% (26/29) for honeycombing detection
was reported by the team.

Uppaluri et al [1] used AMFM(Adaptive Multiple Feature
Method) to identify diffuse lung opacity diseases. Their
data set contained ground glass, honeycombing, reticular
and linear opacity, consolidation, emphysema and nodular
opacity. The group first isolated the lung region from the
background and divided it into31×31 pixel blocks. Higher
order statistical features were extracted from each of the
blocks and Adaptive Multiple Feature Method (AMFM), a
texture classification algorithm based on statistical learning,
was used to classify each of the blocks into different disease
patterns. The group reported a sensitivity of 82.5% (33/40)
and a specificity of 99.5% for honeycombing detection.

3. Overview

In our approach, we moved away from statistical texture
analysis and machine learning completely. Instead we em-
ployed frequency spectrum analysis with Gabor filterbank
and followed by post processing of the results. Specifically,
the lower and higher frequency spectrum of the input im-
age is extracted by a Gabor filterbank. The filtered output
are combined together after thresholding. Two types of bi-
nary filters, a region-based filter and an area-thresholding
filter, are used to remove noise in the detector output. Fig-

ure 2 outlines the basic building blocks of our proposed al-
gorithm.

Figure 2: Outline of the honeycombing detection algorithm.

4. Gabor Filters

For any signal processing application, it is always desirable
to have filters with sharp cut offs. However in practice such
filters, best represented by rectangular filters (all or noth-
ing filters), inject noise into the filtered output in the spatial
domain due to their sinc-like Fourier transform counterpart.
Noise level decreases as the cut off of the filter smooths
out and therefore a trade off between noise level and filter
cut offs has to be made. This is known as the joint spatial-
frequency error and it is formally proven by J. Daugman [4]
that 2D Gabor filters minimize this trade off. In this pa-
per, this family of filters is used to obtain parts of the im-
age frequency spectrum. 2D Gabor filters and their Fourier
transform can be written as
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whereσu = 1/2πσx andσv = 1/2πσy andu0, v0 are the
center frequency of the 2D filter. Gabor filters are also linear
shift invariant and orientation selective filters, which makes
them very useful in image processing domains.

5.  Frequency  Masking  for  Honeycombing  Detection

Honeycombing patterns have large internal intensity varia-
tions with a mean around one-third the maximum pixel in-
tensity as determined experimentally. This is in contrast to



normal lung parenchyma which have constant low inten-
sity. Low pass filtering of an image containing honeycomb-
ing would allow the lesion areas to stand out as the lower
frequency spectrum encodes local average intensity infor-
mation. As mentioned in section 4, the lower frequency
spectrum is extracted using Gabor filters which have the fol-
lowing form:

ĝL(u, v) = exp
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L

]
(3)

This filter is often known as a Gaussian filter, which is a
special case of Gabor filters.

However, a different family of lung diseases, known as
increased opacity diseases, cause a constant increment of
pixel intensity within the lesion area in contrast to normal
lung tissue. Therefore, lesions such as ground glass opacity,
result in similar local mean intensity to honeycombing and
is therefore unable to be differentiated when subjected to
low pass filtering. An image of ground glass is shown in
figure 3.

Figure 3: The left image shows an entire lung affected by
ground glass while the right image shows a healthy lung.

A solution to this problem can be found by observing
that the higher end of the frequency spectrum encodes
information about local variations. Therefore, high pass
filters should respond strongly to honeycombing patterns
but not to increased opacity disease patterns.

The 2D high pass filters are designed by adopting a generic
filter bank design strategy discussed by Manjunath and
Ma [5]. Filters of the first two scales from a four-scale
filterbank are employed as high pass filters. Filtered outputs
of different orientations at the same scale are averaged to
produce an orientation invariant output. The first two scales
of the filter bank layout in the frequency domain is shown
in figure 4.

Figure 4: Honeycombing detection filter bank layout.

It is observed that although high pass filters successfully
filter out increased opacity disease patterns, they also pick
up other artifacts such as large nodules. Large nodules
appear as large bright blobs which are similar to rectangular
pulses in the signal processing sense. They have large
sinc frequency spectrum which extends into the passband
of the high frequency filters and hence cannot be filtered
out. Although nodules also appear in the low pass filtered
output, they can be easily discarded by thresholding, by
noticing that the local mean intensity of nodules is around
the maximum value while that of honeycombing is just
one-third the maximum value.

Furthermore, noise found in the high pass and low pass
filtered outputs forms a largely non-overlapping set while
the wanted information is contained in both outputs. There-
fore, noise can be eliminated by first binarizing the filtered
outputs by thresholding and then taking the intersection
between the binary masks. Thresholding in this case turns
pixel values within the threshold to 1’s and the rest to 0’s.
Figure 5 shows a preliminary honeycombing detection
mark obtained by the above process.

It is easy to see that the preliminary mask still contains
noise. The next section proposes two different family of
filters aimed at removing as much of this noise as possible.

6. Post Processing

It has been suggested by radiologists that honeycombing
only occurs in the peripheral regions of the lung [6]. Part of
the noise in the detection mask can be removed by creating
a peripheral lung mask and intersecting this mask with
the preliminary honeycombing detection mask. To create
peripheral mask, first the lung regions are extracted using
thresholding and morphological operations. The difference



Figure 5: (i) the original lung image; (ii) the honeycomb-
ing region labelled by radiologist and (iii) the preliminary
honeycombing mask.

image between the convex hull that covers both the lungs
and the lung masks yields a mask for mediastinum region
(cavity between the lungs where the heart is located). Lung
boundary lining the mediastinum is removed using the
mediastinum mask. The remaining lung boundary is then
dilated to get peripheral mask.

We must then clean up any left over noise, which primar-
ily comprises boundary artifacts and some of the tiny dots
which are often only a few pixels wide. Standard techniques
such as closing removes the noise as well as some of the re-
gions of interest (ROIs), which are made up of groups of
small unconnected pixels (1’s). To avoid the elimination of
ROIs, a binary area-thresholding filter was devised. As the
honeycombing mask contains 1’s and 0’s, this filter adds up
the total number of 1s inside the window and sets the pixel
to 0 if the total is less than a certain threshold. Windowed
area-thresholding filter can be formally defined as follows:

Im(x, y) = 0 |
N∑

q=−N

N∑
p=−N

Im(x + p, y + q) < γ (4)

whereγ is the area threshold and the window size is equal
to 2N + 1. Figure 6 shows the output of the final honey-
combing detection mask.

7. Experimental Results

A total of 376 lung HRCT images labelled by qualified ra-
diologists were used to evaluate the performance of the pro-
posed honeycombing detection algorithm (HCDA). 24 im-
ages in this set were known to contain honeycombing based

Figure 6: The final honeycombing mask.

on labels. Sensitivity of the algorithm was measured by
considering each individual diseased region labelled by the
radiologists and counting the result of HCDA to be correct
if the algorithm also picked up some part of the labelled re-
gion. For example, if there are three different honeycomb-
ing regions marked by the doctor in one image and the al-
gorithm picks up two of these regions, then the algorithm
has a sensitivity of 66%. Sensitivity is also known as the
accuracy of the algorithm. Formally, sensitivity is defined
as

Sensitivity =
#True Positives

#True Positives + #False Negatives
(5)

where

• True Positive(TP):Regions labelled by the radiologist
as honeycombing and recognised by HCDA.

• False Positive(FP):Regions recognised by HCDA but
not labelled by radiologist as honeycombing.

• False Negative(FN):Regions labelled by radiologist
as honeycombing but not recognised by HCDA.

• True Negative(TN): Regions not labelled or recog-
nised as honeycombing by either the radiologist or
HCDA.

There were 40 honeycombing regions within the 24
honeycombing images in the data set and HCDA scored an
sensitivity of 87.5% (35/40). Some of the detection results
can be found on the last page of this paper.

The specificity of the algorithm, which one could think as
one minus the probability of a slice being labelled as hon-
eycombing when there is no honeycombing present, can be
calculated as follows:

Specificity =
#True Negatives

#False Positives + #True Negatives
(6)

HCDA was applied to the other 352 images in the
database, which contained 17 different disease categories,
including ground glass, emphysema, nodular opacity,
interstitial thickening and parenchymal bands (but no



Set Name TN FP
Bronchiectasis 36 2
Bullae and Blebs 26 7
Consolidation 9 1
Emphysema 57 8
Ground Glass Opacity 26 5
Interface Sign 1 1
Interlobular Septal Thickening. 5 2
Intralobular Intersitial Thickening 31 4
Irregular Lung Opacity 20 4
Large Nodule 19 4
Mosaic Perfusion 8 0
Parenchymal Bands 22 5
Peribronchiovascular Inter. Thickening 9 0
Pleural Plaques 32 1
Small Nodule 16 4
Subplural Interstital Thickening 20 3
Traction Bronchietasis 15 4
Total 352 55

Table 1: Specificity Measurment

honeycombing). The result is shown in Table 1. The results
show that HCDA achieved a specificity of 84.4% (297/352).

An additional feature of HCDA is its short processing time.
The optimized Gabor filter bank filtering only needs 3 ma-
trix multiplication and 4 Fast Fourier Transforms (FFT),
which has complexityN2logN , whereN ×N is the size of
the image. The algorithm on average only takes around 20
seconds to process one image with most of the time spent
on the lung and peripheral region detection on a standard
Pentium 4 2.8GHz home computer.

8. Concluding Remarks

We presented the development of a computerized honey-
combing detection algorithm using frequency spectrum
analysis with minimal post-processing. This technique
demonstrated high sensitivity and specificity with short
processing time. It has been shown by Uppaluri [1] that
such values of sensitivity is comparable to the performance
of a human expert. Although the proposed algorithm has
a lower specificity than some the of currently available
algorithms in this field, it is still acceptable because the
main purpose of this algorithm is to reduce the number
of slices that a radiologist needs to view. A specificity of
84.4% implies that the algorithm is capable of discarding
84 slices out of a hundred slices with high confidence
and thus has successfully reduced the number of possible
candidates by 6 fold.

Potential future work includes fine tuning of the Gabor high
pass filters to suit the honeycombing pattern instead of us-
ing filters from a generic filter bank. It is also possible to
learn parameter values for thresholds and window sizes by
incorporating learning algorithms. The current algorithm is
yet to be evaluated by radiologist. We have applied HCDA
on 3000 unlabelled lung HRCT images obtained from two
hundred patients. The algorithm picked up around 500 im-
ages from the set, which correlates well to the specificity
which we obtained from our previous labelled data. The
500 images are to be validated by radiologists in the near
future.
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Figure 7: From left: (i) Original Image; (ii) Honeycombing regions (white) labelled by radiologist; (iii) Honeycombing
regions (white) labelled by HCDA

Figure 8: From left: (i) Original Image; (ii) Honeycombing regions (white) labelled by radiologist; (iii) Honeycombing
regions (white) labelled by HCDA

Figure 9: From left: (i) Original Image; (ii) Honeycombing regions (white) labelled by radiologist; (iii) Honeycombing
regions (white) labelled by HCDA


