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Abstract

Most fingerprint matching systems are based on match-
ing minutia points between two fingerprint images. Each
minutia is represented by a fixed number of attributes such
as the location, orientation, type and other local informa-
tion. A hard decision is made on the match between a pair of
minutiae based on the similarity of these attributes. In this
paper, we present a minutiae matching algorithm that uses
spatial correlation of regions around the minutiae to ascer-
tain the quality of each minutia match. The proposed algo-
rithm has two main advantages. Since the gray level values
of the pixels around a minutia point retain most of the local
information, spatial correlation provides an accurate mea-
sure of the similarity between minutia regions. Secondly,
no hard decision is made on the correspondence between a
minutia pair. Instead the quality of all the minutiae matches
are accumulated to arrive at the final matching score be-
tween the template and query fingerprint impressions. Ex-
periments on a database of 160 users (4 impressions per
finger) indicate that the proposed algorithm serves well to
complement the 2D dynamic programming based minutiae
matching technique; a combination of these two methods
can reduce the false non-match rate by approximately 3.5%
at a false match rate of 0.1%.

1. Introduction

Fingerprint matching is a difficult problem due to the
large intra-class variations (variations among different im-
pressions of the same finger) and the small inter-class varia-
tions (images of different fingers may appear quite similar)
[11]. Three fundamental reasons for the large intra-class
variations are partial overlap, non-linear distortion, and sen-
sor noise. Due to rotation and displacement of the finger
placed on the sensor, there is often only a partial overlap
between the template and query fingerprint images. This
problem is more severe in the case of small solid-state sen-
sors that are being increasingly deployed. The mapping

of a three-dimensional finger into a two-dimensional im-
age results in non-linear distortion. Further, changes in
the applied finger pressure and skin conditions (dry skin,
sweat, etc.) cause a change in the thickness of the ridges.
Noise introduced in the fingerprint sensor in the form of
residues left over the sensor surface due to repeated usage
also contributes to the intra-class variations. Although it is
unlikely that impressions of different fingers are identical
in all respects [12], they may be quite similar in terms of
their global structure and ridge orientations. This can lead
to a number of false matches when the matchers rely on
global features alone. The results of the Fingerprint Veri-
fication Competition 2004 (FVC2004) [10] show that even
the state-of-the-art fingerprint matchers do not achieve ex-
tremely high accuracy when the database contains images
of poor quality. The best (commercial) fingerprint matcher
in FVC2004 had an equal error rate (EER) of2.07% indi-
cating that fingerprint matching remains a challenging task
in the field of pattern recognition and image processing.

The problem of fingerprint matching has been exten-
sively studied and numerous algorithms have been pro-
posed. These algorithms can be classified as correlation-
based, minutiae-based, and ridge feature-based approaches.
Minutiae-based methods [13],[6],[7] represent minutia
points as a feature vector of fixed length. The features repre-
senting a minutia point typically consist of its location, ori-
entation, type (e.g., ridge-ending or ridge-bifurcation), and
other local information like the ridge count and the qual-
ity of the fingerprint region around the minutia point. The
matching of two minutiae sets is usually posed as a point
pattern matching problem and the similarity between them
is proportional to the number of matching minutia pairs. Al-
though the minutiae pattern of each finger is quite unique,
noise and distortion during the acquisition of the fingerprint
and errors in the minutia extraction process result in a num-
ber of missing and spurious minutiae. Since it is difficult to
reliably obtain the minutia points from a poor quality fin-
gerprint image, other ridge features like the orientation and
the frequency of ridges, ridge shape, and texture informa-
tion have been proposed for fingerprint matching [8],[17].



However, the ridge feature-based methods suffer from their
low discrimination capability. In correlation-based finger-
print matching, the template and query fingerprint images
are spatially correlated to estimate the degree of similarity
between them. If the rotation and displacement of the query
with respect to the template are not known, then the corre-
lation must be computed over all possible rotations and dis-
placements, which is computationally very expensive. Fur-
ther, the presence of non-linear distortion and noise signifi-
cantly reduces the global correlation value between two im-
pressions of the same finger. To overcome these problems,
correlation is usually done locally only in certain “interest-
ing” regions (regions of high curvature, minutia information
regions, etc.) of the fingerprint image.

Recently, researchers have come up with hybrid finger-
print matchers by making use of more than one basic ap-
proach to matching. For example, Ross et al. [15] have
suggested the use of both minutiae and ridge flow informa-
tion to represent and match fingerprints. They have shown
that the performance of the minutiae-based matcher pre-
sented in [6] can be significantly improved by using addi-
tional information provided by the FingerCode method [8].
The local correlation-based fingerprint matching algorithm
presented in this paper is a similar attempt to improve the
performance of a minutiae-based matcher by introducing
a correlation step to ascertain the quality of each minutia
match. The gray-level information of the pixels around the
minutia points contain richer information about the local re-
gion than the attributes of the minutia points. Hence, the
spatial correlation of regions around corresponding minutia
points is a good measure of the degree of similarity between
them. The correlation-based fingerprint matcher proposed
by Bazen et al. [1] selects certain distinctive regions in the
template fingerprint image and searches for those regions in
the query image. However, their method is not very robust
to rotation. The work of Beleznai et al. [2] attempts to ex-
ploit the structural information around minutiae to improve
the recognition performance of a minutiae-based matcher.
However, the focus of this work is the compression of the
region around the minutia points using Principal Compo-
nent Analysis (PCA) and Discrete Wavelet Transform to
achieve a fast verification. Kovacs [9] proposed the use of
small windows around the minutia to search for possible
correspondences in the query image. Once the possible cor-
respondences were found, the author used triangular match-
ing to match the two fingerprints. Our approach differs from
all these methods in the following ways. The query image
is aligned to match the template image using the ridges as-
sociated with the minutiae. Hence, the search for minutia
locations in the query that correspond to the template minu-
tiae is not based on the region around the minutiae. Further,
we apply an enhancement algorithm to both the template
and the query images before the spatial correlation step, re-

sulting in a better possibility of match between truly cor-
responding minutia regions. Since the correlation is done
locally, the proposed algorithm is relatively tolerant to the
problem of non-linear distortion.

The rest of the paper is organized as follows: Section 2
describes the minutia extraction algorithm used in our ex-
periments. The pre-alignment of the template and the query
based on the corresponding ridges is presented in section 3.
Section 4 describes our proposed minutiae matching algo-
rithm and highlights the advantages of the proposed algo-
rithm. The experimental results are presented in section 5.
Finally, section 6 summarizes our work and provides point-
ers for future work in this direction.

2. Minutiae Extraction

The first stage in our fingerprint verification system is
the extraction of minutiae points from a fingerprint image.
The algorithm proposed by Jain et al. [6] has been used
for this purpose. This method involves five major steps that
are shown in Figure 1. The first step is the estimation of
the orientation field of the fingerprint image. This is fol-
lowed by the segmentation of the fingerprint area from the
background. Both these steps are achieved by computing
block-wise gradients of the input image. The ridges are ex-
tracted from the input image by applying two masks that
adaptively capture the maximum gray level values along
the direction perpendicular to the ridge orientation. Several
heuristics are then applied to remove the holes and speck-
les in the binary ridge map. The extracted ridges are then
thinned and minutiae are detected in the thinned image. The
location, orientation, and the points on the ridge (sampled
at the inter-ridge distance) associated with the minutia are
stored for each minutia point. The ridge points are useful
in the alignment of the template and the query during the
minutiae matching stage.

Figure 1. Algorithm for minutiae extraction.

3. Fingerprint Alignment

In the absence of noise and other deformation, the ro-
tation and displacement between two images can be com-
pletely determined using two corresponding point pairs. In
the ideal scenario, the true alignment can be estimated by
testing all possible pairs of minutia for correspondence and



then selecting the best correspondence. Since our matcher
involves a computationally intensive correlation step, it is
not practical to test all possible minutia pairs. Hence, we
use the points on the ridge associated with the minutia to
reduce the number of possible correspondences. We make
use of Procrustes analysis [4] to get a good estimate of the
rotation and displacement from a pair of possibly corre-
sponding ridges. LetT represent the set of ridge points
in the template and letQ represent the set of points on
the corresponding ridge in the query. Lett = (t1, · · · , tk)
andq = (q1, · · · , qk) be the centered (mean is subtracted)
versions ofT andQ, respectively, represented as complex
numbers. Here,k is the minimal length ofT andQ. Let
q∗ represent the complex conjugate transpose ofq. Let θ be
the rotation andτ be the displacement that transforms the
points inQ to T . The solution forθ andτ are as follows.

θ = angle

(
q∗t
q∗q

)
, (1)

τ = T̄ − eiθQ̄, (2)

where T̄ and Q̄ are the mean of the points inT and Q,
respectively, represented as complex numbers. The Pro-
crustes analysis can also be used to find the scaling factor.
However, in our experiments all the fingerprint images were
obtained using the same sensor and hence, the scale factor
is set to1. Let T̂ be the value ofT predicted usingQ,
θ andτ . If T andQ are truly related by a rigid transfor-
mation, then the difference between̂T andT must be very
small. Letd be the sum of the squared error betweenT̂ and
T . A minutia pair is considered as a possible correspon-
dence only ifd ≤ c, wherec is a fixed threshold (set to
5 in our experiments). Further, if the estimated translation
in the horizontal (vertical) direction is greater than half the
width (height) of the image or if the absolute value of the
estimated rotation is greater than30◦, then the minutia pair
is not considered as a possible correspondence. These two
heuristics are based on the assumption that the rotation and
displacement cannot be larger than the selected thresholds
and applying these heuristics reduces the number of possi-
ble minutia correspondences significantly. Since the minu-
tiae matcher evaluates all possible correspondences and se-
lects the one that maximizes the correlation value, the re-
quirement is that there should at least be one reasonably
accurate estimate of the rotation and displacement in the
selected set to obtain a high matching score for a genuine
match. In our experiments, it was observed that when the
template and query images were of reasonable quality, the
selected correspondences had at least one good estimate of
the rigid transformation parameters.

4. Local Correlation-based Matching

Our algorithm for fingerprint matching is shown in Fig-
ure 2. The minutiae extraction algorithm is applied to the
template and the query fingerprint images and the minutia
points and the associated ridge points are extracted. The
query image is rotated using the estimated rotation. The
template and the rotated query images are enhanced us-
ing a modified version of the Gabor filter-based enhance-
ment technique proposed by Hong [5]. Hong proposed a
method for the reliable estimation of the orientation field
using coarse ridge maps. However, in our implementation,
this orientation field estimation procedure is replaced by the
algorithm proposed by Dass [3]. This algorithm is based
on a Markov random field model and generates a smooth
orientation field in blocks of sizeb × b pixels. There is a
trade-off in the selection of an appropriate value ofb. If
b is small, the orientation estimation is more accurate, but
is more susceptible to noise. Whenb is large, the estima-
tion of the orientation field in the regions of high curvature
is not very accurate. An optimum value ofb must be cho-
sen according to the nature of the fingerprint images in the
database. The value ofb is set to5 in our experiments. Since
the enhancement of the query image is accomplished after
the rotation, the distortion resulting from the rotation pro-
cess is suppressed. The application of a bank of Gabor fil-
ters of different orientations during the enhancement stage
also allows us to segment the foreground regions in a fin-
gerprint image. If the variation of the filtered values across
the different orientations is small in the entire block, it in-
dicates that the particular block is not oriented along any
specific direction. This can occur if the block comes from
the background region or is too noisy and hence, unrecov-
erable. Therefore, such blocks are marked as background.

The size of the fingerprint images in our database is
300× 300 pixels. Windows of size42× 42 pixels are cho-
sen around the minutia locations in the template image. Re-
gions of size32 × 32 are selected around the correspond-
ing locations in the query image.The size of the template
window is selected to be slightly greater than that of the
query window in order to make the correlation values toler-
ant to small errors in computing the location of the minutia
point. Note that after the pre-alignment stage, the minutiae
locations in the query are not used and the selected query
window may or may not contain a minutia point. Problems
like spurious or missing minutiae in the query, do not af-
fect the matching as long as there is at least one good esti-
mate of the rotation and displacement. Typically, the tem-
plate image is obtained under human supervision in a con-
trolled manner. Hence, the template can be expected to be
of good quality and has a smaller probability of producing
false or spurious minutiae (no special care was taken dur-
ing the acquisition of the template images in our database;



Figure 2. Algorithm for local correlation-based fingerprint matching.

so it does contain some poor quality images). The normal-
ized cross-correlation between the query window and the
template window is computed and the peak is detected. If
the estimation of rotation and displacement is accurate and
there is no non-linear distortion, the peak would occur at the
center of the correlation matrix. In practice, the peak should
be close to the center. We allow a deviation of±10 pixels
from the center. If the peak lies outside this tolerance re-
gion, the correlation is set to zero. Otherwise, the absolute
value of correlation at the location of the peak is considered
as the correlation between the query and template windows.
When the overlap between the template and query finger-
print images is partial, some of the template minutiae may
fall outside the fingerprint region of the query. Those minu-
tiae are not considered for correlation. The local correlation
of all the template windows with the corresponding regions
in the query are computed and the mean correlation value
is found. All possible correspondences from the alignment
stage are tested and the maximum correlation value over all
the correspondences is taken as the matching score between
the template and the query.

5. Experimental Results

Our database consists of fingerprint impressions of160
users obtained using a Veridicom sensor. Each user pro-
vided four impressions of each of the four fingers, namely,
the left index finger, the left middle finger, the right index
finger, and the right middle finger. The results reported in
this paper are based only on the four impressions of the left
index finger. The fingerprint verification performance of the
local correlation-based matcher is compared with that of the
2D dynamic programming based matcher proposed in [7].
The equal error rates (EER) and the genuine accept rates
(GAR) of the two matchers at two values of false accept
rate (FAR) are shown in Table 1.

The Receiver Operating Characteristic (ROC) curves for
the correlation-based and 2D dynamic programming based
matchers are shown in Figure 3. It can be seen that the
GAR of the two matchers are comparable at higher FAR
values. At lower values of FAR, the dynamic program-
ming based matcher outperforms correlation-based matcher
by approximately10%. The presence of some poor quality
images in the database reduces the GAR of the correlation-
based matcher at low FAR values, while the performance



Table 1. Error rates of the three matchers

Matcher Equal Error Rate GAR at 1% FAR GAR at 0.1% FAR
2D dynamic programming based 5.6% 91.2% 86.1%

Correlation-based 5.1% 87.3% 76.7%
Combined 4.5% 94.7% 89.7%

of the dynamic programming based matcher is unaffected.
Figure 4 shows two examples of poor quality images in
the database that were not handled appropriately by the
correlation-based matcher. The image in figure 4(a) con-
tains very little ridge information. In the image shown
in figure 4(b), the ridge thickness near the singular points
is large and these regions were marked as unrecoverable
by the enhancement algorithm. This shows that the local
correlation-based matcher is not robust with respect to im-
age quality and hence more work needs to be done to enable
it to handle poor quality images.
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Figure 3. ROC curves for the three matchers.

A score-level combination of the two matchers using the
sum rule [14] and min-max normalization [16] results in
a significant improvement (about3.5% increase in GAR at
0.1% FAR) in the matching performance. Figure 5(a) shows
two impressions of an user that were assigned a low match-
ing score by the 2D dynamic programming based matcher
(due to the presence of a number of spurious minutiae in
the query image); the same pair was assigned a high match-
ing score by the correlation-based matcher. On the other
hand, the pair of impressions in Figure 5(b) was assigned a
low matching score only by the correlation-based matcher
(due to the failure in finding the correct alignment). In both
these cases, the combined score of the two matchers was
sufficiently high. This indicates that combining the hard
minutiae correspondences found by the 2D dynamic pro-
gramming based matcher with the correlation in the local

minutiae regions can lead to a more accurate matcher.

6. Summary and Future Work

We have presented a correlation-based fingerprint
matcher that utilizes local correlation of regions around the
minutiae to determine the degree of match between two
fingerprint images. This method uses a well-known algo-
rithm for minutiae extraction and uses Procrustes analysis
of corresponding ridge curves to align the query with the
template. The two images are enhanced using Gabor filter-
banks and the normalized cross-correlation is used as the
quality of the minutiae match. The performance of our algo-
rithm is slightly inferior to that of the 2D dynamic program-
ming based minutiae matcher, mainly due to the inability to
handle fingerprint images of very low quality. However,
integrating the proposed algorithm with the 2D dynamic
programming based matching yields a better matcher. The
enhancement and correlation tasks are computationally in-
tensive and hence, a fast implementation of our algorithm
needs to be developed for real-time applications.
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