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Abstract

Conventional derivative-based corner detection is of-
ten crippled by missing junctions, poor localizations, and
showing up of false negatives and false positives with
change in the control parameters. This paper presents a
novel algorithm that efficiently detects corners along with
the directions (orientations) of the edges associated with
each corner. The algorithm is marked by some adaptive
features that strengthen the robustness and usefulness of the
algorithm. Experimental results on a varied set of images
exhibit the stability and efficiency of the algorithm.

1. Introduction

Corners are important geometric features of a digital im-
age. In a gray-level image, corners are formed at bound-
aries between two significantly dissimilar image brightness
regions, where the boundary curvature is sufficiently high.
Detection of corners is often required in many computer
vision applications such as shape analysis, object recog-
nition, optical flow computation, 3D scene reconstruction
from stereo image pairs, etc. Being sparse features, mere
presence of them are considered sufficiently informative.
Hence, much of the work on two-dimensional features of
an image is focused on detection of corners.

Corner detection can be broadly categorized as contour-
based method or gray-level based method. In the contour-
based method [3, 6, 9, 11], a segmented boundary is fol-
lowed and the rate of change of the contour angle is watched
to detect and locate corners. Thus, this method is quite
susceptible to the adopted segmentation procedures. As
an improvement on corner detection, CSS (curvature scale-
space) method [14] is proposed recently by Mokhtarian and
Suomela, where corners are detected, tracked, and localized
through the curvature analyses based on multiple scales.
On the contrary, the gray-level based method has been sug-
gested to detect corners directly from the gray-scale images
without any prior segmentation. The use of angle-based

templates is proposed by Rangarajan et al. [15]. There also
exist gradient-based methods [7, 8, 10] for corner detection
by identifying curvature changes by differential analysis
without the need for prior segmentation. A literature survey
by Zheng et al. [18] summarizes the existing gray-level cor-
ner detection methods. In recent times, several corner detec-
tion techniques have been proposed [1, 2, 4, 5, 12, 13, 17].
One of the widely referred corner detection algorithms is
SUSAN [16], where, a circular mask of fixed diameter (7
pixels) is used to extract the local structural information
based on the USAN area in order to judge the candidature
of the mask’s nucleus as a corner. The algorithm proposed
here differs from SUSAN in several aspects, viz., adap-
tively augmenting the annular window depending on a num-
ber of conditions, design of an adaptive annular filtering
scheme, adaptive thresholding of brightness parameter, and
subpixel-precision evaluation of incident edge directions at
each corner.

2. Proposed corner detection

Let
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�������������������������

be the grayscale inten-
sity of any point

�������
	
in a grayscale digital image

�
with� rows and  columns. Then the gradient of intensity at

any point ! ��"��$#%	&�'�
is given by two components in the

right-hand side of equation 1.()�*��"��+#,	.-0/�1 �1 � ��"��$#%	2�%1 �1 � ��"��$#%	43 (1)

The magnitude of
(��*��"��$#%	

is a measure of the strength of
edge, if any, passing through

��"��$#%	
, and can be expressed in

several suitable forms, customized to the requirement, one
of which is as follows:5 ()�*��"��+#,	 5 -76666 1 �1 � ��"��$#%	86666�9 6666 1 �1 � ��"��+#,	:6666 (2)

The corresponding second order difference
(<;��*��"��$#%	

is
used to find the zero-crossing across the edge, guided by the
direction = as given by equation 3.
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Usage of above directional differences (first order and
second order) is a traditional and popular approach to find
the gray level topological features (viz. edges, corners, etc.)
of an image, but this has some severe problems, some of
which are as follows:
(i) Inappropriate

()�*��"��+#,	
and

(K;��*��"��+#,	
: In the discrete do-

main,
()�*��"��+#,	

and
( ; �*��"��$#%	

merely considers the neigh-
boring pixels (4-N or 8-N) of

��"��$#%	
, thereby weakening the

relevance of their definitions in the real domain, especially
for the case where the gray level transition in and around the
concerned point

��"��+#,	
is spread over a larger region, which

often leads to improper location and erratic detection of de-
sired features.
(ii) Zero crossing problem: For the gray level transition as-
sociated with a ramp edge, which is the most prevalent type
of edge in a natural gray scale image, the zero crossing pro-
cedure at a point sometimes yields a wide range of solution
(when

5 ()�*��"��+#,	 5
is same for 3 or more consecutive pixels

along the same “ramp”) or a staggered edge point (when
the zero crossing(s) lies away from the middle of the same
“ramp”), posing further analysis in extracting the true edge
point and the best edge direction at the concerned point.
(iii) Noise: Presence of noise is a very common character-
istic in a digital image, which, without any noise cleaning,
when convoluted with the gradient operators,

(�����"��+#%	
and( ; ����"��$#%	

, often produces impure results. The refinement
process (e.g. Gaussian filtering, median filtering, etc.), in
order to get rid of the noise from the image, in turn, blurs
the image in general, and the edges in particular, thereby
worsening the situation of detecting any image feature.

In order to circumvent the aforesaid problems, in this
work, therefore, we have not used the directional difference
operators for detecting the corners. We have not even ap-
plied any standard filtering on the input image, since any
filtering mask of some defined size, say LNMOL , (viz. PQMRP ,
or,
� M � gaussian mask) may include, in worst case, the gray

values of ( L ;QS L ) non-edge pixels for a true edge pixel,
which will affect our feature detection procedure. Instead,
we have designed an adaptive annular filtering scheme as
discussed below.

2.1. Adaptive annular filtering

Let ! �������
	 be any point in the image
�
, and TVU I:W J4XY be

the ordered list of pixels of the (digital) circle of radius Z
centered about ! , enumerated in clockwise direction start-
ing from

��� 9 Z ���
	 , as shown in Fig. 1. Let
5 T Y 5 be the

number of pixels in T U I�W J4XY , which will be independent of�����[�
	
and constant for a given value of Z . Now we define\ U I�W J4XY as the ordered list of image gray values of the points
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Figure 1. Annular lists TCU I�W J4XD , TCU I�W J4X; ,
�����

, where the pix-

els labeled by Z are in the list TCU I:W J�XY and ! �����[�
	 is
shown by ‘ ] ’.

in T U I�W J4XY , such that for each ^ ,
�K_ ^ _ 5 T Y 5 SO� , the ^ -th en-

try in
\ U I�W J4XY is the gray value of the ^ -th point in TVU I:W J4XY . In

the implementation of our algorithm,
5 T Y 5 , and the angular

tolerance in degrees, `�a , are obtained from Look Up Table
LUT-1 as shown below, to reduce the execution time. Con-
struction of LUT-1 is independent of all parameters used in
the algorithm.

LUT-1 required for b c,deb and f
g .h 1 2 3 4 5b c d b 8 12 16 20 28f
g 23 15 11 9 6

It may be observed that, if ! lies on some gray level
edge or corner in the image, then the gray level transition
across the respective edges would be reflected in the pattern
of gray level values in

\ U I�W J4XY , which can be exploited to
extract the location and direction of the edge. Strengthening
and appropriating the procedure of finding the concerned
edge directions requires the reduction of noise present in\ U I�W J4XY , which is done by convoluting each element in

\ U I:W J�XY
with a mask i Y = j D j ; ����� jCk�l ����� j ; j D to create a

filtered list of gray values m U I�W J4XY , in accordance with the
following equation:

m U I�W J4XY � ^ 	n- k loprq B k�l i Y �ts Y 9 "A	vu \ U I:W J4XY � ^ 9 "A	k lopwq B k l i Y ��s Y 9 "G	 (4)

where,
\ U I:W J4XY � ^ 9 "A	 denotes the x � ^ 9 "A	 mod

5 T Y 5 y -th
element in

\ U I�W J4XY �
for ^ -?�z�����������2� 5 T Y 5 S{� . Since the 2nd

order difference of the gray value transition along the maxi-
mum gray value gradient for a ramp edge resembles the 1-d
gaussian function, we resort to the gaussian mask i Y of
size

�:s Y 9 1. The speciality of the mask i Y adopted in our
algorithm is that, with increase in the value of Z , i.e., higher
augmentation of TVU I:W J�XY , the size of i Y =

��s Y 9 1 is also in-
creased to suit the slant of the ramp edge, since a lower



value of Z encompasses a part of the gray value transition,
whereas a sufficiently high value of Z ensures the inclusion
of the entire gray value transition of the edge in T U I�W J4XY . A
sample image is cropped and magnified as an example in
Fig. 2 that demonstrates the increase in the length of the
ramp edge, where, there exist two ramp edges, whose ramp
lengths are given in Table 1.

Figure 2. An example of finding the directions ( | D � | ; ) of
incident edges at a point ! �������
	 (shown by ) using the
angles


 | D W D � | D W ; �������w� and

 | ; W D � | ; W ; �������w� extracted

from filtered annular lists mRU I�W J4XD , mRU I:W J�X; ,
�����

.

Table 1. Gray value ramp lengths and gray value transi-
tions for different Z in Fig. 2.

ramp length gray value trans.h b c d b edge-1 edge-2 } d edge-1 edge-2
1 8 4 4 4 4 0 92 103
2 12 6 7 5 7 1 141 133
3 16 6 7 6 6 1 165 172
4 20 5 10 5 6 2 177 175
5 28 5 9 5 6 2 177 174

2.2. Adaptive brightness thresholding

In a natural image, the gray-level value around an edge
point or a corner point along the maximum gradient direc-
tion changes gradually. Thus, larger the augmenting win-
dow radius Z centered about the corresponding point is,
higher is the change of gray value across an edge, within
some suitable range of Z . Fig. 3 justifies the need for adap-
tively changing the brightness threshold ~ Y with Z . If �
represents the zero-crossing in an ideal ramp edge as shown
in Fig. 3, then ~ Y is practically divided into 2 equal parts,
one above the abscissa line through � and the other below
it. As a result, the value of D; ~ Y ( ~ Y , there of) increases with
the window radius Z , as in Eqn. 5, so that ~ Y is minimum
for Z -��

and has no appreciable change when Z exceeds 3
or 4. ~ Y -�� ~
� �A��S���������S Z:��� 	G� (5)� is related with the maximum gray value transition of
an edge along its maximum gradient direction, i.e., slope of
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Figure 3. Change of gray level threshold with annular
radius.

the curve shown in Fig. 3. Based on the observation that an
entire edge transition along the maximum gradient direction
(i.e. ramp length as shown in Table 1) gets captured in the
annular list

\ Y for Z - 3 or 4, we have considered � -�
in our experiments, where implementation of Eqn. 5 is

realized by a look up table LUT-2 that is prepared once for
an image for a given value of brightness threshold, ~ � , as
shown below.

An instance of LUT-2 for �,�?���e� and ����� .h 1 2 3 4 5� d 28 38 42 44 44

2.3. Estimation of edge directions

Another important feature of the proposed work is the
estimation of edge direction by mean weighted difference.
This method of finding edge direction works superbly for
both natural and synthetic images, which usually possess
ramp and step edge transitions respectively. For step edges,
usual directional derivatives F�HF�I and F�HF�J provide the neces-
sary edge directions. But for ramp edges with low

5 (�� 5
,

the derivatives produce erratic edge directions, since calcu-
lation of F�HF�I and F�HF�J deals with only �KM�� neighborhood of
the concerned point and the entire transition pattern along
the maximum gray value gradient is not considered while
estimating the edge direction. In this approach, we have
taken into consideration the entire gray-level transition cor-
responding to an edge and, therefore, the estimated edge
direction precisely matches the true edge transition.

We define a function � to reorder the annular list m�U I:W J�XY
by a cyclic forward shift ‘ � ’ to produce a new list �m�U I:W J4XY in
order to expedite the edge extraction procedure as follows:��� 
 ^ �,� � l � BED  ¡¢ 
,� ^ 9 � 	 mod

5 T Y 5 �,� � l � BED£ q   ,
such that both the following two conditions (c1) and (c2)
are satisfied.

(c1) ¤�m�U I:W J4XY � ^ 	�¥ � � l � BED  -¤ �m U I:W J4XY x � ^ 9 � 	 mod
5 T Y 5 y ¥ � � l � B¦D£ q   ,

where, � - min

��z���������������2� 5 T Y 5 S��:� .

(c2) either, at least one of§ � �mRU I�W J4XY �[�z����	
and

§ � �mRU I�W J4XY � 5 T Y 5 S�������	 is 0, or,



sign x § � �m U I�W J4XY �[�z���e	 y)¨-
sign x § � �m U I:W J4XY � 5 T Y 5 S©���[�,	 y ,

where,
§ � �m U I:W J�XY �t����ª:	n- �m U I�W J4XY �«�*	VS �m U I�W J4XY ��ª:	

, and,
sign

�t@%	.-'S¬���t@O­���	2�����t@O®¯��	2���z�t@)-?�,	
.

(a)
\ U I�W J4X° and mRU I:W J�X° (b) �mRU I�W J4X°

Figure 4. An example of finding the directions ( | D W ° � | ; W ° )of incident edges at ! �����[��	 in Fig. 2 using the filtered

annular list �m�U I:W J4X° .

Let ¤ �m�U I:W J4XY �±��² W ³ 	�¥ ³ q�´Gµ³ q D be the ¶ -th monotonically as-
cending (or, monotonically descending) subsequence of
length

� ²
in �m U I�W J4XY . Then ¤·�m U I�W J4XY �«� ² W ³ 	�¥ ³ q�´ µ³ q D corresponds

to the gray value transition for a valid edge if both the fol-
lowing conditions (c3) and (c4) are true:

(c3) In �m�U I�W J4XY , there exists no monotonically ascending
subsequence of length exceeding

�8²
that contains¤��m�U I�W J4XY �«�*² W ³ 	 ¥ ³ q�´ µ³ q D .

(c4) 666 § � �m�U I�W J4XY �t��² W ´ µ ����² W D 	 666
¸ ~ Y .
As there are

5 T Y 5 pixels in the annular list �mRU I�W J4XY , the
angular resolution at the center ! �������
	 of the digital cir-
cle TCU I:W J�XY is ¹�º  2»� � l � . So, the angle made by the radius vector

joining the point T U I:W J�XY ��>�	
(see Fig. 1) with the +ve x-axis

measured in clockwise direction is given by ³+¼ ¹[º  �»� � l � . Fur-
ther, it may be observed there are

�8²
discrete gray-values

in the subsequence ¤ �m U I:W J4XY �±� ² W ³ 	 ¥ ³ q�´ µ³ q D , i.e. (
� ² S��

) gray
value differences, which have a cumulative effect on the
value

§ � �m U I:W J�XY �t� ² W ´Gµ ��� ² W D 	 of overall gray-level transition
corresponding to ¶ -th edge incident at ! . The dominant
ones out of these (

� ² S��
) differences will outweigh the

others in their way of deciding the resultant edge direction.
Hence, the edge direction corresponding to the subsequence¤ �mRU I�W J4XY �«�*² W ³ 	2¥ ³ q�´Gµ³ q D is given by:

| ² W Y -¾½ P�¿ �,À5 T Y 5�Á ´ µ BEDÂ
³ q D

ª U ³�X² W Y§ � �mRU I�W J4XY ����² W ´ µ �t��² W D 	 9 ��Ã 9 ��*Ä
(6)

where,
ª U ³�X² W Y - x UÆÅ µ�Ç ÈÊÉ%ËAÌ Å µ�Ç È X; u § � �m U I�W J4XY ��� ² W ³ Ì D ��� ² W ³ 	 y .In Fig. 4(a), an instance for Z -�Í

is shown for the sam-
ple given in Fig. 2. The minimum cyclic shift � , shown in
Fig. 4(a), is required to produce the new (cyclic shifted) an-
nular list �m�U I:W J4X° shown in Fig. 4(b). The list �mRU I:W J�X° contains

one descending subsequence

,���
��� ¿ ������������Î
�[�z�����������2��Íz�

and one ascending subsequence

����z�����������������e�%�

(consid-
ering the indices in the original list m&U I�W J4X° ) that satisfy con-
ditions (c3) and (c4). Hence these two subsequences corre-
spond to the angles | D W ° and | ; W ° , shown by their respective
index values in Fig. 4(b), and actual angles overlaid in Fig.
2, evaluated from Eqn. 6. Note that, the last entry of the
last valid subsequence (conforming to conditions (c3) and
(c4)) may be the first element in �m U I:W J4X° , which should be
checked exclusively, which occurs when the start pixel of
the first edge transition coincides with the end pixel of the
last edge transition (e.g., in Fig. 4(b)).

2.4. Algorithm

1. Execute the steps (2) - (12) for each point ÏÑÐÓÒ*ÔGÕ�Ö�×�Ø .

2. Initialize h ��� .
3. Using the Look Up Table (LUT-1), assign f g �Ù�Ú�ÛGÜ »Ý Þ l Ý�ß Úà�á , and construct the annular list â�ã«ä�å æ2çd .

4. Apply adaptive annular filtering on â�ã«ä�å æ2çd to get è)ã«ä�å æ�çd in
accordance with Eqn. 4, and éèQã«ä�å æ�çd there of, conforming
to conditions (c1) and (c2).

5. Choose the adaptive brightness threshold ��d from LUT-2.

6. Using conditions (c3) and (c4) and Eqn. 6, find the set of
incident edge angles ê�ë4ì å d�í4î lì�ï Ú from éè ã«ä�å æ2çd , where, ð d is
the number of distinct edges for h -th annular list.

7. If ð�d.�òñ or ðzdÑó��ð Ú , then Ï is not a corner candidate.

8. If h ��� , then increment h by unity, and go to step (3).

9. If ô4ì
Ð h Ö·õ.��ô4ì%Ð h÷ö �2Ö[Ô��)ø¯ùúø¯ð d , then (further aug-
mentation of h is not required) assign ûü� h , and go to
step (10); else if h � h4ývþ ä ( h4ý�þ ä �ÿ� in our experi-
ments), then Ï is not a corner candidate; else, increment h
by unity, and go to step (3).

10. Arrange the angles ê�ë�ì å d4í for h�� � so that they are or-
dered as in ��ë ì å Ú�� . If b ë ì å d�� Ú ö ë ì å deb øüf
g for any ù ,��ø{ùKø{ðzd ö � , then Ï is not a corner candidate.

11. Assign ë ì �òë ì å � Ô���ø{ù<øúð Ú .
12. If ð Ú ��� and �
	�ñ�� ö�
 ��� ù��+ô:Ð�ë Ú ÔGë à Ö�õ f þ (default

���
Úà ��� ����� in our algorithm), then Ï is just an edge point,

but not a corner point; otherwise, Ï is a corner candidate.

13. Merging: For each cluster of corners accumulated in and
around a true corner, select the one having minimum vari-
ance of edge directions for �Rø h ø û , and discard the
rest.

3. Experimental results

We have implemented our algorithm in C in SunOS Re-
lease 5.7 Generic of Sun Ultra 5 10, Sparc,

� P�P MHz, and
compared its performance with SUSAN [16], the mostly
referred algorithm in recent times. In SUSAN’s approach



(Figs. 5(a), 8(a), 6(a), 7(a), 9(a)), several false corners creep
in, whereas, the proposed algorithm reports fewer false neg-
atives and false positives (Figs. 5(b), 8(b), 6(b), 7(b), 9(b)).
Apart from detection of corners, our algorithm also finds
the directions of incident edges for each corner, and there-
fore, takes some additional time during execution. Hence
the time taken by SUSAN cannot be compared with ours.
The details of experimental results for our algorithm are
shown in Table 2.

Table 2. Results for 5 sample images.
Image Image # corners Time (secs.)
name size A B C D �,�
test ������������� 464 61 0.78 0.19 15
house ������������� 105 60 0.38 0.25 45
blocks ������������� 162 56 0.66 0.39 45
lab �:�����<�8��� 776 248 2.13 1.07 30
logo ������������� 90 22 0.54 0.21 45
A = No. of corners before merging.
B = No. of corners after merging.
C = Time for detection of corners before merging.
D = Time for merging corners.

4. Conclusion and future work

The proposed algorithm produces uniform results for
several real and synthetic images, binary as well as gray-
scale, and is characterized by its adaptability with the gray-
scale topology of an image. Though the computational
complexity rises with the increase in radius of the annular
list, but in terms of the accuracy and localization of detected
corners and associated edge directions, our approach per-
forms very well. Furthermore, the method can be extended
to devise a procedure of finding the most genuine corners
in any image by augmenting the window to suitably higher
radius, having predetermined trade-off with computational
complexities. Interpolation of windows is another avenue
that needs exploration for improved results.
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(a) Corners by SUSAN. (b) Corners before merging. (c) Corners after merging. (d) Incident Edges and Corners.
Figure 5. Outputs for Test image (b, c, d: proposed).

(a) Corners by SUSAN.

(b) Corners after merging. (c) Incident Edges and Corners.
Figure 6. Outputs for Lab image (b, c: proposed).



(a) Corners by SUSAN. (b) Corners after merging. (c) Incident Edges and Corners.
Figure 7. Outputs for Blocks image (b, c: proposed).

(a) Corners by SUSAN. (b) Corners after merging. (c) Incident Edges and Corners.
Figure 8. Outputs for House image (b, c: proposed).

(a) Corners by SUSAN. (b) Corners after merging. (c) Incident Edges and Corners.
Figure 9. Outputs for a sample logo image (b, c: proposed).


