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Abstract

In this paper we propose schemes for using learning in
video analysis tasks like content based filtering and shot
summarization. Shot segmentation is performed by our
neuro-fuzzy framework, which extracts fuzzy rules for video
segmentation from the trained neuro-fuzzy network. We ex-
plore Independent Component Analysis and extract Inde-
pendent Components that act as features for describing the
content of a shot. We prove our claim by showing simple
results of a Content Based Filtering scheme based on this.
We also propose a technique for summarizing content of a
video shot. Unlike, keyframe based approaches we try to
find out those ”critical windows” from the shot sequence
that best describes the content of a shot. Hierchical clus-
tering of these windows provide the summarization of the
shots. This scheme thus preserves the original component
objects that make up the video thus characterizing the se-
mantically essential information present in the video.

1. Introduction

Video Analysis is critical for information and entertain-
ment appliances delivering video or video shots on user’s
demand. The sheer volume of video data makes analysis
task difficult. Browsing tools are important requirement for
the users to obtain a quick idea about the video content.

The development of browsing tools is a very active
area of research[9, 2, 13, 5]. Browsers use as building
blocks subsets of frames called keyframes, selected be-
cause they summarize the video content better than their
neighbors[11]. Obviously, selecting one keyframe per shot
may not always summarize the complex information con-
tent of long shots. Shots should be sampled by a higher
or lower density of keyframes according to their activity
level[3]. However, most video representation and sum-
marization approaches that have appeared in the literature
does ultimately rely on static arrangements of key frames.
Specifically, a set of key frames is selected from each video
shot and spatially arranged in a variety of pictorial summary

forms[10]. Such compact representations of video provide
viewers with a global picture of the entire video content on a
single screen[14]. Key Frame based representations that are
used by most video summarization schemes have the com-
mon drawback that they are not natural to non-experts and
can be hard to grasp on a single screen, particularly when
the underlying video is complex[6].

In contrast our technique compactly summarizes a video
data by preserving its original component objects that make
up the video which characterize the semantically essential
information present in the video. Our scheme for generat-
ing summary is in terms of window in the frames of the shot
and hence the summary generated is in terms of constituent
objects that make up a video shot. Our approach is thus
focussed on identifying the semantic content of a shot in
terms of the objects that make up the shot. We thus provide
a novel scheme for building description of a video. We also
provide a textual summary of a video shot which assumes
presence of labelled windows of simple objects which can
be compared with the critical windows of a shot generated
by our summarization scheme. This textual summary pro-
vides to the naive user a text based description of the video
content in a shot. The scheme thus provides a novel way of
generating automatic textual annotation of a video shot. We
have also shown application of this technique for establish-
ing similarity between video shots.

2. Video Segmentation: A fuzzy rule based approach

First step in our video summarization scheme is seg-
mentation of the sequence into shots. We have used a
neuro fuzzy rule based approach that we have proposed
in [4]. We use features such as histogram difference and
pixel difference[4] as input features to train a neuro-fuzzy
network. Histogram difference typically considers global
changes in a video sequence and is helpful to detect abrupt
changes in a shot. On the other hand, a gradual change can
be characterised by both global (fading) and local changes
(wipe). Pixel difference is used to identify local changes
in a sequence. Thus for detecting gradual changes we need



a combination of histogram difference and pixel difference
features. We use a neuro-fuzzy network for extracting fuzzy
rules for video segmentation[4]. We train our system on
large number of examples. We use three consecutive frame
values of histogram difference and pixel difference as input
features. The input neurons in the network consist of three� -set neurons[4] corresponding to fuzzy sets low,mid and
high for each feature and all three of them are connected
to a single hidden layer neuron. The hidden layer neurons
are in turn fully connected to output neurons. We use error
backpropation as our training algorithm. After completion
of training, the training data is clustered and the cluster cen-
tres are presented as input to the network. The path that con-
tributes maximally to the input neuron is sensed and fuzzy
rules are extracted depending upon the confidence factor[4]
of the winning node. The process is iterated till duplicate
rules are generated. This process is carried out offline.

New sequences are segmented using the fuzzy rules gen-
erated. We found that the scheme worked reliably on large
number (more than 100) of sequences from different do-
mains.

3. Independent Components as shot descriptors

To describe the content of any shot we need a canonical
representation scheme. For this, we choose a set of win-
dows of specified size from different frames of the video
shot. Considering the ensemble of these frame windows,
which we name critical windows of the shot, we find the set
of independent components characterizing these windows.
We then take only the informative independent components
considering the non-Gaussianity measure[7]. Each shot of
the database video, can be viewed as a combination of these
informative independent components. In other words, we
approximate each shot window as an additive mixture of
these components. The approximation error reflects how
far the database shot content matches with the content of
the critical windows.

3.1. Obtaining critical windows in a shot

We use learning to find optimal position of those win-
dows which are expected to capture regions of interesting
shot features. Further, important regions in a shot can get
associated with more weightage through placement of mul-
tiple overlapped windows over the region.

Effectiveness of this scheme depends upon the choice
of critical windows. We use genetic learning for identify-
ing critical windows. Genetic algorithms provide powerful
search mechanisms that can be used in optimization prob-
lems as they possess the ability to exploit the information
accumulated about an initially unknown search space in or-
der to bias subsequent searches into useful subspaces.

Genetic algorithms provide us with a novel scheme to
perform unsupervised learning for positioning windows in a
large, complex and poorly understood search space spanned
by the frames of the shot. Note that learning critical window
positions in the frames of a shot using GA is done in offline
mode. Next, we explain the protocols followed in our ge-
netic algorithm based learning.

3.1.1 Representation

We encode the location of window centers from various
frames in a single chromosome. For a

���������	�	�
frame

image a pixel coordinate requires 
 � bits. Thus for � win-
dows we have a chromosome of length 
 � � bits, i.e.,

� �
bytes. We also keep track of the frames to which these win-
dows belongs to.

3.1.2 Fitness Function

For evaluating fitness of each chromosome we first divide
each frame of the candidate shot into a grid such that each
cell in the grid gives a image window. Thus we have same
sized image windows for all frames of the shot. Now given
the location of the critical window centres that is encoded in
the chromosomes as well as the respective frames to which
they belong we compute the informative Independent Com-
ponents of the space spanned by these critical windows.
The cost of each chromosome or its objective value, which
denotes how well these critical windows describe the con-
tent of the shot, is simply the error in approximation in ex-
pressing all the windows in the grid of all the frames in the
shot by the Independent Components produced by the crit-
ical windows. Thus after the GA converges the fittest chro-
mosome in the gene pool gives us those ”critical” windows
in a shot that adequately describe content of the shot that is
being analysed.

Thus mathematically, we consider � critical windows
of size � � � from various frames in the shot sequence.
Each window, therefore, consists of �� pixels. Figure 1
demonstrates the representation that we used.

We divide each frame of a shot into grid giving � win-
dows of the same size as the critical windows and if there
are � such frames in the original shot then we have ulti-
mately � such windows, where ����� � � .

Formally, if the critical windows be represented as������������������� �"! where each �"# is stream (or signal) of
length �$ and if we represent the independent components
derived from critical windows as % �&� % ���������'� % ! where
each % # represents a signal of length �$ , we can choose the(

informative independent components based on the non-
Gaussianity measure such that we have % � � % � �������'� %") in-
dependent components. Let the windows obtained after di-
viding each frame into a grid for all frames in the shot be
represented as * ��� * ���������'� *�+ where each * # represents a
stream of �$ pixels. We then approximate each * # as a lin-



ear combination of % ��� % ����������� % ) and find out the error in
approximation.

Figure 1. Representation Scheme

, Error calculation For calculating this error in approx-
imation, we first obtain the optimal linear fit of the in-
formative independent components to a shot window* # by solving the linear regression equation given as-/. # �0* # (1)

where
-

is a matrix whose column vectors are the
informative independent components % � � % � ��������� %")
such that

-
is a �$ � (

matrix and * # is a �$ � 

vector. The coefficients

. # (which is a
( � 
 vector)

can be solved for
(21 �$ . In the case

( �3�$ , we
can get an exact solution provided

-
is invertible. For(54 �6 , this is an under-complete representation and

the problem becomes ill-posed. In general, we have(87 �6 (overcomplete representation) which essen-
tially gives us a constraint on the trade-off between the
number of windows and the window size. An opti-
mal solution for the overcomplete representation can
be obtained by linear regression as. # �:9 -/;�-/<>=@? 9 -/; * # < (2)

Note that, for overcomplete representation, in general,
the matrix

- ; -
is invertible. The error in the linear

regression fit can be obtained asA 9B* # < �:C�* #ED -F. # C  (3)

Since the matrix
- ; -

is symmetric, simple algebraic
manipulation gives usA 9G* # < �0* # ; 9GH D - 9 -I;�-�<J="?>-/;K< * # (4)

where H is the identity matrix.

3.1.3 Determining Fitness value of a chromosome

For every shot window we obtain an error measureA 9G* # < which reflects the error in approximating the
shot window by the informative independent compo-
nents obtained from the critical windows. Thus we ob-
tain � such errors for � such windows in a shot. Intu-
itively, if

A 9G* # < �ML for any window * # of a shot then
it indicates that the content of that window perfectly
matches with the content provided by the critical win-
dows of the shot. If for all � windows the error is low
then the critical windows encoded by the chromosome
spans the largest subspace of the space provided by the
all the � windows of the shot. We therefore, combine
these error measures as

N � OP Q RS?�T 9B* # < (5)

where
N

denotes the score of expressivity of the criti-
cal windows encoded by a particular chromosome. We
define T 9B* # < as follows:

T � 

VUXW�Y�Z�9\[^]69 A 9B* # < D`_ <�< (6)

where [ and _ being two parameters controlling the
shape of function. The score function as defined above
decreases slowly as the error of mismatch increases.
The function can be viewed as a soft threshold function
such that all chromosomes having errors of mismatch
less than the threshold _ have higher scores and all
other chromosomes having errors of mismatch greater
than _ score very low. This score thus gives the fitness
value of each chromosome.

3.1.4 Method

We initialize the chromosome population with random win-
dow centers from random frames in the shot. We used
roulette wheel selection strategy with elitist model of com-
putation where the best set of critical windows along with
their corresponding frames are retained [8]. Mutation
is performed by flipping each bit with a probability ina Lcb L�L&
 � L&b L&
�d . We performed single point cross-over with
a probability of L&bfe � . For a shot of average length (80
frames) and average complexity we found that the Genetic
Algorithm terminates after about 1300 generations when
the cost of the best chromosome usually falls below a cer-
tain threshold. On completion of GA we obtain a set of
critical windows and their corresponding independent com-
ponents which spans best the space of the frame images rep-
resented by the video shot.



3.2. Content Based Video Filter

Using the critical windows and the ICs of a query shot
we can filter out similiar video shots from a video database.
Given video shots from a video database, frames of these
shots are divided into a grid of same sized windows. Af-
ter this we analyze the error in approximation, to express
the windows of a database shot in terms of the Independent
Components obtained from the learnt ”critical” windows of
the query shot. For this we use the same error formulation
as discussed in the previous section. Instead of threshold-
ing and selecting/rejecting database video shots we provide
a soft thresholding function as defined in the previous sec-
tion and display similarity scores of the query shot to that
of a database shot.

4. Automatic Textual Annotation and Hierchical
Shot Summarization

In this section we discuss our technique to summarize
shots and generate textual annotations to it. To summarize
a shot adequately we need to cluster the selected ”critical”
windows. To remove position sensitivity of objects within
windows clustering should be based on two dimensional
central moment values. We consider upto second order,
two dimensional central moments which makes windows
insensitive to arbitrary translations of the objects within.
We note that, to make the windows insensitive to rotation
or scaling clustering should be based on Hu invariant mo-
ments. Moreover, the clustering should be hierarchical so
that the appearance based relationship between object com-
ponents that is captured by the ”critical windows” can be
made explicit. For hierarchical clustering, we use the Link-
age Algorithm[12].

We then generate automatic text based annotation for a
video shot by simply traversing the dendrogram (tree pro-
duced by Linkage Algorithm).

When two leaf levels are combined in the dendrogram
they are combined by appending the keyword ”AND” in
between their respective labels. When a interior node is
combined they are combined by appending the keyword
”WITH” instead. Nodes generated at each level therefore
can be associated with a textual annotation. Thus after com-
bining nodes (using any of the keywords) in a dendrogram
we get the final textual summary or the annotation of the
shot sequence by simply reading off the label assigned to
the root node.

5. Implementation and Experimental Results

In this section we analyse the results obtained for various
video content analysis tasks using the techniques explored
in the previous sections.

5.1. Protocol

We experimented with the system in the Matlab environ-
ment and VC++ on Windows 2000 running on Intel Xeon
dual processor of 1.7 GHz and 2 GB RAM. The system was
tested for about 103 test video sequences which included
domains like sports, news, and commercials. For comput-
ing Independent Components we use Hyvarinen’s FastICA
algorithm [1]. We provide subjective measures to demon-
strate the effectiveness of our system. We gathered feed-
back from nine independent subjects and took the average
of the rating provided by all subjects.

5.2. Results of our system as a Content Based Video
Filter

VC++ was used to implement our algorithm that gen-
erates fuzzy rules from the trained neuro fuzzy network.
These rules were then coded into a rule-list using Matlab’s
fuzzy logic toolbox and its fuzzy inferencing engine was
used to segment any test video into shots based on these
fuzzy rules.

We demonstrate performance for different segmented
database shots when our system was trained to the field
shot of a cricket video sequence given in Figure 2. The
critical windows extracted from the frames are also shown
as marked squares in Figure 2. The critical windows cap-
ture essential components of the shot like scoreboard, ESPN
logo, pitch, ground, gallery etc. We demonstate perfor-
mance of our content based filter in Figure 3. We observe
that while the second shot given in Figure 3, which is also
a typical field shot from a cricket video sequence, received
high scores from our system, the first shot given in Figure
3 which was from a news video sequence obtained a much
lower similarity score.

5.3. Results on shot summarization

We next demonstrate results of our shot summarization
algorithm. In Figure 4 we show the results of our sum-
marization scheme for the shot sequence shown in Fig-
ure 2. We find that Clusters 1 and Cluster 3 are com-
bined which consist of windows of ground and gallery
respectively. Cluster 6 contains windows of the stand.
Cluster 5 provides windows of ESPN logo. Cluster 4
provides windows of a scoreboard in the background of
”The Great Clock”(near Lords stadium in England), while
Cluster 2 contains only windows with the ”Great Clock”
against various background. Parsing the dendrogram by our
method also generates a textual summary of the shot as ”
’The Great Clock’ WITH Scoreboard WITH ESPN WITH
Stands WITH Ground and Gallery”. We found that as com-
plexity of a shot decreases the number of clusters required
to summarize the shot also decreases and hence results in a
much simpler textual annotation.



Figure 2. A training shot of cricket field sequence. The critical windows learnt by the genetic algorithm is shown by the marked

squares.

Figure 3. A subsampled news shot and a cricket shot. Our system assigned a similarity score of 0.210 to the first shot and a

score of 0.893 to the second.

5.4. Subjective Rating of the Summarization Per-
formance

We evaluate the subjective performance of our Shot
Summarization system by taking subjective evaluations of
8 randomly chosen individuals and asking them to evaluate
the expressivity of our summarization scheme with regard
to the original shot. We found that when shot complexity
was low, the summarization scheme achieved good ratings
as it was easy to understand the simple textual annotation
containg few predicates. For higher complexity the struc-
ture of the tree became complex which made the naive users
difficult to understand the complicated structure of the tex-
tual annotation. We demonstrate the average performance
of our summarization scheme using Table 1.

Domain Num. of seq Avg len. Subj. Rat.(in 10)
Sports 27 75 7.76
News 21 110 8.50
Commercials 17 70 6.30

Table 1. Subjective Rating of our Summarization Scheme

6. Conclusions

In this paper we have explored the use of learning in
Content Based Retrieval in the domain of videos with the
Independent Component Analsysis as our basic building
block. For exploring video analysis tasks like content based
video filter design or shot summarization we first divide any
video into shots. We then described a novel approach to the
design of a content based filter based on learning the ICs
of critical windows in a shot. We also presented the devel-
opment of a shot summarization scheme based on hierchi-
cal clustering of the moments from the critical windows in
a shot. This novel technique summarizes a video data by
preserving its original component objects that make up the
video which characterize the semantically essential infor-
mation present in the video. We also provide a textual sum-
mary of a video shot to the naive user and thus the scheme
can be looked upon as one providing automatic annotation
of a shot.
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