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Abstract

In this paper we propose an eigenimage based super-
resolution reconstruction technique. Eigenimages of a
database of several similar low resolution images are ob-
tained and the given low resolution image is projected on
to the eigenimages to compute the eigenimage coefficients.
The eigenimages are then interpolated using any conven-
tional interpolation method and approximated to the near-
est orthonormal bases. The high resolution image is recon-
structed using these bases and the same coefficients deter-
mined as above. This method is applicable to images of a
particular class and results are demonstrated for both face
and fingerprint images. The algorithm offers significant ad-
vantage when the input image is blurred and noisy.

1. Introduction

In most imaging applications, images with high spa-
tial resolution are desired and often required. Resolution
enhancement from a single observation using image in-
terpolation techniques is of limited application because of
the aliasing present in the low-resolution image. Super-
resolution refers to the process of producing a high spa-
tial resolution image than what is afforded by the physi-
cal sensor through post processing means. It includes up-
sampling the image, thereby increasing the maximum spa-
tial frequency, and removing degradations that arise dur-
ing the image capture, viz., aliasing and blurring. In gen-
eral, there are two classes of super-resolution techniques:
reconstruction-based and learning-based. In reconstruction-
based techniques the high resolution image is recovered
from several low resolution observations of the input, but
in learning-based super-resolution algorithms a database of
several other images are used to obtain the high resolution
image.

In many biometric databases, a large number of images
of similar content, shape and size are available. For exam-
ple, in investigative criminology one has available face and

fingerprint databases. These are often taken at controlled
environment. The question we ask is that if one encounters
a poor quality input image, can it be enhanced using the
knowledge of the properties of the database images ? Thus,
the basic problem that we solve in this paper is as follows.
Given a low resolution input image belonging to a particular
class (face, fingerprint, etc.) and a database of several low
resolution images of the same class, obtain a high resolution
output. We perform principal component analysis (PCA) on
the low resolution image database and an appropriate inter-
polation is carried out on the eigenimages, using which the
high resolution image is reconstructed. We find this method
particularly useful when the input image is noisy and partly
blurred so that the other existing learning-based methods do
not provide a good solution.

2. Related Work

Numerous reconstruction-based super-resolution algo-
rithms have been proposed in the literature. The super-
resolution idea was first proposed by Tsai and Huang that
used the frequency domain approach [17]. A different ap-
proach to the super-resolution restoration problem was sug-
gested by Irani et al. [7, 8] based on the iterative back pro-
jection method. Ng et al. develop a regularized, constrained
total least squares solution to obtain a high-resolution im-
age in [12]. A maximum aposteriori (MAP) estimator with
Huber-Markov Random Field (MRF) prior is described by
Schultz and Stevenson in [16]. Other approaches include a
MAP-MRF based super-resolution technique using the blur
as a cue [15]. In [14] the authors recover both the high
resolution scene intensity and the depth fields simultane-
ously using the defocus cue. Elad and Feuer [3] proposed a
unified methodology for super-resolution restoration from
several geometrically warped, blurred, noisy and down-
sampled measured images by combining maximum likeli-
hood (ML), MAP and projection onto convex sets (POCS)
approaches. Recently, Lin and Shum determine the quanti-
tative limits of reconstruction-based super-resolution algo-
rithms and obtain the up-sampling limits from the condi-



tioning analysis of the coefficient matrix [11].
The ideas described in [1], [2], [4], [6] and [10] belong

to the learning-based super-resolution category. In [4] Free-
man et al. proposed a parametric Markov network to learn
the statistics between the “scene” and the “image”, as a
framework for handling low-level vision tasks, one appli-
cation of which is super-resolution. Authors in [2] have
proposed a super-resolution technique from multiple views
using learnt image models making use of PCA. In [1] Baker
and Kanade develop a super-resolution algorithm by modi-
fying the prior term in the cost to include the results of a set
of recognition decisions, and call it recognition based super-
resolution or hallucination. Their prior enforces the condi-
tion that the gradient in the super-resolved image should be
equal to the gradient in the best matching training image. In
[9], we have proposed a single frame super-resolution algo-
rithm using a wavelet based learning technique. An image
analogy method applied to super-resolution is discussed in
[6]. An eigenface-domain super-resolution reconstruction
algorithm for face recognition is proposed in [5]. The face
hallucination technique proposed in [19] is similar to our
method, but here the authors make use of both low and high
resolution image databases to recover the high resolution
image. They also add constraints to the principal compo-
nents to reduce the nonface-like distortion. The algorithm
that we propose in this paper can be put under the category
of learning-based super-resolution where we make use of
only a low resolution image database to obtain the super-
resolved image.

3. PCA-Based Interpolation

3.1. Low resolution image formation model

It is assumed that the observed low resolution image is
produced from a single high resolution image under the fol-
lowing generative model. Let � represent the lexicographi-
cally ordered high resolution image of �����	� pixels. If 

is the � � ��� lexicographically ordered vector containing
pixels from the low resolution observation, then it can be
modeled as 
�
���������� (1)

where � is the decimation matrix, size of which depends
on the decimation factor and � is the blur matrix. For a
decimation factor of � , ��
���� and the decimation matrix� consists of � � non-zero elements of value ���� along each
row at appropriate locations and has the form [16] (using a
proper reordering of � )
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Figure 1. Illustration of low resolution image formation
model.

As an example, for a decimation factor of �/
10 and with
lexicographically ordered � of size, say �&23�4� , the � matrix
is of size 56���72 and can be written as

��
 �5
 !!
"
�8�&9#9:�#�79#9#989#989#9#9#9#9989;�#�79#9:�#�&989#989#9#9#9#9989#9#989#989#9;�8�&989;�#�&9#9989#9#989#989#9#989;�8�&9#9;�#�

+-,,
. $ (3)

In equation (1), � is the � � �<� noise vector. We assume the
noise to be zero mean but no specific distribution is assumed
in this work. The low resolution image formation model is
illustrated in Figure 1.

3.2. Eigen-image decomposition

An image can be reconstructed from eigen images in the
PCA representation as described in [18]. The basic pro-
cedure for computing the eigen space is as follows: We
have a dataset of = similar low-resolution images, rep-
resented by the matrix > ? �A@ ? � @ $'$&$ @ ?CBED , where ?GF is theHJILK

image vector. In PCA, a set of top M eigenvectorsNPO 
Q> R � O @ R � O @ $&$'$ @ RTS O D , also called eigenimages, are com-
puted from the covariance matrix,

U 
 BV
FXW �
Y ? F[Z]\_^#` Y ? FaZ�\_^8`cb $ (4)

where \ ^ is the average image intensity defined by

\d^ 
 �=
BV
FeW � ? F $ (5)

For a given low-resolution image 
 O , a weight vector is com-
puted by projecting it onto eigenimages,f O 
 N O b Y 
 O Zg\_^#` $ (6)

An approximation of 
 O can be obtained from the top M
eigenimages, h
 O 
 NPO f O � \ ^:$ (7)

Since M is typically much smaller than the size of the image
vector, the image representation through the eigenimage ex-
pansion is not complete. Hence

h
 O is an approximation of 
 O
and the quality of approximation depends on its nearness to
the class of images in the database.



3.3. Eigen-image interpolation

Now we wish to form a set of high resolution eigen-
images using which we can construct the high resolution
output corresponding to the given low resolution input im-
age. In order to do this all the M low resolution eigenvec-
tors and the mean vector are interpolated using the bicu-
bic interpolation. Any other suitable interpolation scheme
can also be used. But we restrict to bicubic interpolation in
this study. The interpolated set of eigenvectors are given byN K 
i> R � K @ R � K @ $'$&$ @ R S K D . One may use appropriate upsam-
pling factor such as �<
j0 @lk:@ 5 @ etc. The new set of interpo-
lated eigenvectors need not be orthonormal. They are then
transformed into the nearest set of orthonormal vectors us-
ing the Gram-Schmidt orthogonalization procedure. Since
all these vectors are of unit norm, the weights (eigen val-
ues associated with the corresponding eigenimages) must
be multiplied by the upsampling factor � (i.e., f K 
1� f O )
to preserve the covariance structure given in equation (4).

The high resolution image is now reconstructed usingh��
 N K f K � \_m (8)

where \ m is the high resolution mean vector obtained by
interpolating the low resolution mean vector \ ^ .

Let us now discuss why the above operation performs a
super-resolution restoration of a given input image. Since
the eigenimage representation (see equation 7) is an incom-
plete representation and since the noise present in the in-
put image is expected to be uncorrelated to all the available
basis vectors, the reconstruction process reduces the noise
drastically. Also, if the input image is blurred, it will still
have significant correlation with the corresponding eigen-
images of the ideal image. Since the eigenimages have been
computed using the good quality training images, the recon-
struction process is expected to remove the blur present in
the data. Needless to say, if the input image is badly blurred,
the associated eigen expansion may be very different from
that of the ideal image, when the reconstruction will be very
poor. Direct interpolation of the input image does not solve
any of the above two problems of blurring and noise per-
turbation. However, we must mention that interpolation of
individual eigenimages does not recover the high frequency
details lost during the low resolution sampling process ex-
plained in equation (1). Hence no additional frequency de-
tails are recovered during the interpolation process. Under
this argument, one can always say that the proposed method
does not achieve an image super-resolution. But one does
achieve image deblurring and noise removal.

4. Equivalence to generalized interpolation

The super-resolution method described as above is con-
ceptually equivalent to the generalized interpolation scheme

reported in [13] for image expansion and generation of
super-resolution images. This is done by decomposing the
image into appropriate subspaces, carrying out interpolation
in individual subspaces and subsequently transforming the
interpolated values back to the image domain. Consider a
function n Y ? @ 
 ` decomposed as

n Y ? @ 
 ` 
po YLq � Y ? @ 
 ` @ q � Y ? @ 
 ` @ $'$'$ @ qsr�Y ? @ 
 `c` (9)

where
q F Y ? @ 
 ` , H 
t� @ 0 @ $&$'$ @ \ are different functions of

the interpolating variables ? and 
 and when they are com-
bined by an appropriate \ -variate function o , one recov-
ers the original function n . Now the individual functionsq F Y ? @ 
 ` are interpolated and combined using equation(9) to
obtain the rescaled function n Y ?guv� @ 
�uv� ` . In [13] pho-
tometric cues were used to decompose the image assum-
ing a Lambertian reflectance model, and the interpolants
were

q � Y ? @ 
 ` 
gw Y ? @ 
 ` @ q � Y ? @ 
 ` 
�� Y ? @ 
 ` and
qsx#Y ? @ 
 ` 
y Y ? @ 
 ` where w and � are the surface normals and y is the

albedo. It is to be noted that various optical and structural
properties of the image, such as 3-D shape of an object,
regional homogeneity, local variations in scene reflectivity,
etc., can be better preserved during the interpolation pro-
cess. It was also shown that an alias free reconstruction ofn Y ?gu/� @ 
vud� ` is possible if the subfunctions are all ban-
dlimited.

In our case o is a linear function , i.e.,

o YLq � Y ? @ 
 ` @ q � Y ? @ 
 ` @ $'$&$ @ qsr�Y ? @ 
 `c` 

rV
FeW �

f F;zq F (10)

where zq F corresponds to the principal components obtained
from PCA decomposition. Here zq F ’s are orthogonal to each
other and they are derived from the database images. Thus
the proposed method is a special case of generalized inter-
polation.

5. The complete algorithm

The complete algorithm is summarized below in terms
of the steps involved.

STEP 1:
Perform the PCA decomposition on the low resolution
image database to get M eigenimages represented by the
matrix

NPO
and also obtain the mean image \ ^ .

STEP 2:
Project the given low resolution image 
 O onto the eigen
images to get the eigenimage coefficients f O .
STEP 3:
Interpolate the eigenimages and the mean image to get
the corresponding high resolution eigenimage matrixN K and the high resolution mean image \�m .
STEP 4:



Approximate the high resolution eigenimages to the
nearest orthonormal bases.
STEP 5:
Obtain the super-resolved image using equation 8.

6. Experimental Results

Experiments were conducted on both face and finger-
print images. For face images the database consisted of �&9|{
low resolution images of size }80/�g~#2 pixels. All the im-
ages were of frontal face and no pre-processing was done
on them. A high resolution image is blurred using a k � k
Gaussian kernel with standard deviation 0.5, downsampled
and added with zero mean Gaussian noise of different stan-
dard deviations( � ) to form the input image.

Figure 2 shows the first �&9 low resolution eigenimages
computed from the database of �798{ face images. In Fig-
ure 3 the noisy low resolution image with ��
�9;$e� and
the corresponding bicubic interpolated image and the super-
resolved image for zoom factors of 0 @ 5 and { are shown.
It can be observed that the super-resolved image is almost
noise free and more clear than the bicubic interpolated im-
age which is highly noisy. In Figure 4, even though the low
resolution observation is much more noisy ( ��
�9:$ { ), the
super-resolved image is of far better quality compared to the
bicubic interpolated image which is very noisy. This is also
quantified in terms of the peak signal to noise ratio (PSNR)
tabulated in table 1 where the PSNRs for the bicubic inter-
polated image and super-resolved image for a zoom factor5 for different values of noise level are shown. As men-
tioned in Section 3.3 it is observed that when � is very large
the reconstructed image deviates from the original face im-
age. In Figure 5(a) a low resolution input which is blurred
with �/��� Gaussian mask with standard deviation of 0 is
shown. As expected, the bicubic output is heavily blurred,
but the super-resolved image is almost free from blur. This
demonstrates that as long as there is a good correlation of
the input image with the eigenimages, a good reconstruction
is, indeed, possible. It is also observed that when the low
resolution input is free from noise the bicubic interpolated
image appears to be slightly more blurred (observe the eyes)
than the super-resolved image as can be seen from Figure 6.
Thus the key aspect about our algorithm is its capability to
recover a good quality super-resolved image when the low
resolution input image is blurred and noisy. In all the above
experiments �&989 eigenimages were used to reconstruct the
super-resolved image.

Now we experiment on how many eigenimages are re-
quired for a good reconstruction. Figure 7 shows the
super-resolved image obtained using �&9 @ 0�9 and {�9 eigen
images( ��
�9:$X� @ �v
�5 ). It is observed that using the top{�9 eigenimages a good quality output can be reconstructed.
In all the above experiments the low resolution input image

was a part of the database which consisted of �#{ male faces
and k { female faces. Figure 8 shows the bicubic interpo-
lated image and the super-resolved image corresponding to
an input face image which is not present in the database. In
this case also we are able to obtain a better super-resolved
image.

In the next experiment we demonstrate that if the input
image does not belong to the class of images in the database,
one cannot do any meaningful reconstruction. Figure 9
shows the reconstructed image for some arbitrary input im-
age using the face image database and �&989 eigenimages.
Here the output is not at all related to the input which in-
dicates clearly that the proposed method is applicable only
for a class of images.

One of the drawbacks of PCA based analysis of images
is that the image size should be same in all cases. We now
demonstrate that how this can be circumvented. In Figure
10(a) a low resolution observation of size 5G�<�_58} pixels is
shown. The database images were of dimension }|0d��~#2
pixels. Figure 10(b) shows the bicubic interpolated output
for a zoom factor of } . The low resolution input is first bicu-
bic interpolated by a factor of 0 and then super-resolved by a
factor of 5 using the proposed approach and the correspond-
ing result is shown in 10(c). As expected, the super-resolved
image is less blurred than the bicubic result. This technique
can be adopted to get a good quality super resolved image
when the input image size is very small or different from
the database images.

We now show results of experiments on a different
database. Figure 11 shows the low resolution input, bicubic
interpolated results and the super-resolved images for zoom
factors of 0 @ 5 and { for a fingerprint image. The results are
shown for noise level ��
�9;$e� . It can be observed that the
super-resolved image is more clear and noise free compared
to the bicubic interpolated image. The PSNR for the bicu-
bic interpolated image and the super-resolved for a zoom
factor of 5 are compared in table 1 for different values of � .
In this experiment the low resolution database consisted of�7{#9 fingerprint images of size k 0/� k 0 pixels, and the top�&989 eigenimages were used for reconstruction.

7. Conclusions

We have described a method for super-resolution restora-
tion of images of a particular class using a PCA based gen-
eralized interpolation technique. The low resolution eigen-
images obtained from PCA decomposition are interpolated
and transformed into an orthonormal basis to reconstruct
the super-resolved image. The results obtained for both
face and fingerprint images show far better perceptual as
well as quantifiable improvements over conventional inter-
polation techniques. The proposed method is useful when
multiple observations of the input are not available and one



Figure 2. First ten eigenimages.

(a) (b) (c) (d)

(e) (f) (g)

Figure 3. (a) A low resolution noisy observation ( �i
9:$X� ) , (b) u�0 bicubic interpolated image, (c) u�0 super-
resolved image, (d) u�5 bicubic interpolated image, (e) u<5
super-resolved image, (f) u4{ bicubic interpolated image
and (g) u�{ super-resolved image. Here u6� defines the
upsampling factor.

must make the best use of a poor quality single observation
to enhance its resolution. In future, we plan to compare the
performance of the proposed method with those of Baker
and Kanade [1] and Freeman et al. [4].
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