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Abstract

Robust model fitting is important for computer vision tasks
due to the occurrence of multiple model instances, and, un-
known nature of noise. The linear errors-in-variables (EIV)
model is frequently used in computer vision for model fit-
ting tasks. This paper presents a novel formalism to solve
the problem of robust model fitting using the linear EIV
framework. We use Parzen windows to estimate the noise
density and use a maximum likelihood approach for robust
estimation of model parameters. Robustness of the algo-
rithm results from the fact that density estimation helps us
admit an a priori unknown multimodal density function and
parameter estimation reduces to estimation of the density
modes. We also propose a provably convergent iterative
algorithm for this task. The algorithm increases the like-
lihood function at each iteration by solving a generalized
eigenproblem. The performance of the proposed algorithm
is empirically compared with Least Trimmed Squares(LTS)
— a state-of-the-art robust estimation technique, and To-
tal Least Squares(TLS) — the optimal estimator for addi-
tive white Gaussian noise. Results for model fitting on real
range data are also provided.

1. Introduction

Robust model fitting is central to many computer vision
tasks. Examples include tracking or registration under Eu-
clidian, affine, or projective transformations; surface normal
and curvature estimation for 3D structure detection; and, fit-
ting intensity models for object recognition and object regis-
tration. Robust estimation implies a framework which toler-
ates the presence of outliers — samples not obeying the rel-
evant model. Consider the problem of segmenting a range
image with planer patches: Here, each plane satisfies a lin-
ear parametric model. For estimating parameters of each
plane, samples from all other planes should be considered
as outliers, i.e. they should not contribute to the error in fit.
Another scenario is when the noise model for the observed
samples is not known. It is not possible to come up with a
cost function which is optimal for every kind of (unknown)
noise model. Robust estimation seeks to provide reliable

estimates in such cases — when data is contaminated with
outliers in form of samples corrupted by unknown noise or
when multiple structures are present in the data, some or all
of which need to be detected.

Much work has been done in robust estimation in statis-
tics, and more recently in vision. We refer the reader to
[13] for a recent review of robust techniques used in com-
puter vision. The two major classes of robust methods
proposed in statistics, M-estimators, and least median of
squares (LMedS), are regularly used by computer vision re-
searchers to develop applications. M-estimators, a general-
ization of maximum likelihood estimators and least squares
method, were first defined by Huber [6] and their asymptotic
properties were studied by Yohai et al. [14], and Koenker
et al. [8] in separate works. Least median of squares
(LMedS) was proposed by Rousseeuw [10], wherein the
sum of squared residuals in traditional least squares is re-
placed by median of squared residuals. The Hough Trans-
form [7], [9], and RANSAC [4] were independently devel-
oped in computer vision community for robust estimation.
For Hough Transform, entire parameter space is discretized
and optimal parameters are estimated by a voting scheme
due to each data sample. It can be viewed as a discrete
version of M-estimation. RANSAC [4] uses the number of
points with residual below a threshold as the objective func-
tion. It has similarities with both M-estimators, and LMedS.
Recently, Chen et al. [2] showed that all robust techniques
applied to computer vision, i.e. those imported from statis-
tics, and those developed in computer vision literature, can
be described as specific instances of the general class of
M-estimators with auxiliary scale. In a separate work [1],
Chen et al. explore the relationship between M-estimators
and kernel density estimators, and propose a technique for
robust estimation based on kernel density estimators.

Many parameter estimation problems in computer vision
can be formulated with the linear errors-in-variable model
(EIV) [15], where the observations are assumed to be cor-
rupted by additive noise. Further, it is often desirable to use
implicit functional form. For instance, consider the problem
of range image segmentation mentioned earlier. We can ex-
tract the 3D world coordinates,(xi, yi, zi) from the range
data. If the range measurements,ri are noisy,(xi, yi, zi)



will be noisy. The linear EIV model can be used to fit a
plane through these noisy observations. Further, we should
not use any explicit scheme likez = ax + by + c, since it
does not support the case when the original plane has the
equationax + by + c = 0, i.e. a plane perpendicular to z-
axis. An implicit scheme is thus essential in this case. The
linear EIV model has been used for analysis in some com-
puter vision papers recently [2], [1].

In this work, we assume that the image data may consist
of a number of unknown structures, all of which obey the
linear EIV model. We also assume that the observed sam-
ples are generated by additively corrupting unknowntrue
samples with i.i.d. noise. However, the noise model is not
available to us. We present a robust estimation algorithm
that detects these structures irrespective of the number of
structures or the noise model. The robustness is achieved
as we use a nonparametric (kernel) estimator to estimate the
noise density rather than assuming it to be known a priori.
We also prove the convergence of the algorithm under mild
conditions on the estimating kernels.

In Section 2, we prove that the parameter estimation
problem for the linear EIV model amounts to solving a gen-
eralized eigenproblem. We then show in Section 3, that a
robust estimation framework can be developed by model-
ing the pdf of the additive noise using nonparametric ker-
nel density estimators. We then propose an iterative al-
gorithm as a solution to the parameter estimation problem
using the ML (maximum likelihood) framework and prove
the convergence of this algorithm. In Section 4, we empir-
ically compare the proposed approach with Least Trimmed
Squares (LTS), a state-of-the-art robust estimation tech-
nique, and Total Least Squares (TLS), which is optimal for
gaussian noise. We also present results of model fitting on
real data extracted from range images.

2. Linear Errors-in-Variables

The linear errors-in-variables (EIV) approach assumes that
the observed samples are generated from thetrue data sam-
ples by additively corrupting them by independent, identi-
cally distributed (i.i.d.) noise. The true samples obey some
linear, functional constraints that capture the a-priori physi-
cal nature of the problem. Thus, we define,

Definition 2.1 (Linear EIV model). LetSo
x

.= {xio}n
i=1 be

a data sample set of sizen satisfying the constraints,

f(xio) = xio
T θ − α = 0 i = 1, ..., n (1)

The observed data sample setSx
.= {xi}n

i=1 is related toSo
x

by i.i.d. samples from an unknown, additive noise processε
such thatxi = xio + εi. The ambiguity in parametersθ and
α is resolved by imposing the constraint‖θ‖ = 1.

Consider the case when the noise samples are i.i.d. Gaus-
sian i.e. εi ∼ N (0, σ2Ip). It is well known that the max-

imum likelihood estimate of the parameters and noise free
samples is then given by

[θ̂, α̂, x̂io] = argmin
θ,α,xio

1
n

n∑

i=1

‖xi − xio‖2 (2)

subject to the constraints onθ, α, andxio as specified in
Definition 2.1. Clearly, in minimization of (2), for fixed val-
ues ofθ andα, the estimates for noise free samplesxio are
given by the orthogonal projection of the observed samples
xi onto the hyperplane given by (1), with

min
xio

‖xi − xio‖ = ‖xi − x̂io‖ = |xi
T θ − α| (3)

This indicates that the minimization can be reduced to just
minimizing the sum of squared projections,

∑n
i=1 |xi

T θ −
α|2, with respect to parametersθ andα. The theorem below
shows that this is indeed true.

Theorem 2.2. Define[θ̃, α̃] as the total least squares(TLS)
solution as below,

[θ̃, α̃] .= argmin
θ,α

1
n

n∑

i=1

|xi
T θ − α|2, ‖θ‖ = 1 (4)

Then,[θ̃, α̃] = [θ̂, α̂] where[θ̂, α̂] are as defined in (2) with
the constraints as specified in Definition 2.1.

Proof. For the optimization problem specified by (4), the
solution [θ̃, α̃] should satisfy the following equations ob-
tained using the Lagrange multiplier method. These equa-
tions are obtained by setting the derivative with respect toθ
andα equal to zero.

θ :
∑n

i=1(xi
T θ̃ − α̃)xi + λθ̃ = 0 (5)

α :
∑n

i=1(xi
T θ̃ − α̃) = 0 (6)

Similarly, the solution,[θ̂, α̂], to the problem specified by
(2) subject to the constraints in Definition 2.1, should satisfy
the following equations:

xio : xi − x̂io = λiθ̂ i = 1, ..., n (7)

θ :
∑n

i=1 λix̂io + γθ̂ = 0 (8)

α :
∑n

i=1 λi = 0 (9)

subject to the constraints in Definition 2.1. Now, from (7),
we getx̂io = xi − λiθ̂. Also, taking the transpose of this
equation and post-multiplyinĝθ gives us,λi = xT

i θ̂ − α̂.
These two equations can be used in (8) to get,

n∑

i=1

(xi
T θ̂ − α̂)xi + (γ −

n∑

i=1

λi
2)θ̂ = 0 (10)

Substituting the values ofλi in (9) also gives,

n∑

i=1

(xi
T θ̂ − α̂) = 0 (11)



Further, (5) and (6) can be used to show thatλ =∑n
i=1(x

T
i θ̃ − α̃)2. Similarly, (7)-(9) implyγ −∑n

i=1 λ2
i =∑n

i=1(x
T
i θ̂ − α̂)2. Thus, solutions to (5)-(6) and (10)-(11)

are the same. Hence both problems are equivalent.

Now, let us examine the problem in (4) more closely.

Defining β = (θ, α)T , A =
∑n

i=1

(
xixi

T xi

xi
T 1

)
and

B =
(

Ip 0
0 0

)
, whereIp is thep× p identity matrix, we

can rewrite (4) as

β̂ = argmin
β

βTAβ; βTBβ = 1 (12)

Solving for β leads toAβ = λBβ, whereλ is mini-
mum eigenvalue for the generalized eigenproblem. Thus,
the solution is the generalized (minimum) eigenvector ofA
with respect toB. Consequently, The Maximum likelihood
estimation of the linear EIV model parameters in case of
Gaussian noise reduces to a generalized eigenproblem.

The assumption, made above, of Gaussian noise is not
always desirable. The model of noise is often unknown, and
the estimator proposed above may not be optimal in gen-
eral. In particular, for heavy tailed distributions (e.g. log-
normal distribution as will be discussed in section 4), the
approach above might have a really bad performance. Also,
the structure that we need to detect (in this case the model
that we need to fit) might only be valid locally. For instance,
while detecting multiple planer segments in a range image,
the model parameters are valid only on (local) segments of
data. Since the segmentation is not a priori available, robust
estimation becomes important for the discovery of any lo-
cal models. It tolerates the presence of data samples that do
not obey the model that is to be estimated. In the next Sec-
tion, we propose a principled approach to carry out robust
estimation.

3. Robust EIV Estimation Using Parzen Windows

If we know the noise model for the linear EIV problem, then
we can use the maximum likelihood approach to estimate
the EIV model parameters. However, quite often, we do not
have access to such a model. In that case, one can take re-
course to estimating the noise density and then applying the
maximum likelihood framework. In this section, we present
such an approach. We first formulate the problem in terms
of a noise density estimate using Parzen windows and sub-
sequently, we propose a solution to the said problem.

Parzen windows or kernel density estimators are a pop-
ular non parametric density estimation technique in pattern
recognition and computer vision [3]. The Parzen window
estimate of the pdf from a given set of data samples can be
defined as follows:

Definition 3.1 (Kernel Density Estimator). Let the ob-
served samplesyi ∈ Rp, i = 1, ..., n be generated indepen-
dently from an underlying probability distribution function
f(x), f : Rp → R+. Then the kernel density estimate for
f is defined as,

f̂(y) .=
1

ndet(H)

n∑

i=1

K(H−1(y − yi)) (13)

where, H is a nonsingular bandwidth matrix, andK :
Rp → R+ is the kernel function with zero mean, unit area,
and identity covariance matrix.

The kernel functionK(·) used above is often assumed
to be rotationally symmetric. We find it convenient to de-
fine the profile of this rotationally symmetric kernel as a
univariate kernel functionκ : R → R+, whereK(y) =
ckκ(−‖y‖2), ck being a normalization constant.

The kernel density estimate of an arbitrary set of data
samples can be computed as shown above. However, the
above density estimate does not factor in any prior knowl-
edge that one may have of the data. For example, the data
might be generated using a parametric model. For such
a case, we proposed a zero bias-in-mean kernel estimator
in our earlier work [12]. We used this estimator for ro-
bust (parameter) estimation where the image is specified us-
ing an explicit parametric formulation. In this paper, we
adapt the aforementioned approach to define a robust ker-
nel maximum likelihood estimation framework for the EIV
model. We draw the reader’s attention to the fact that the
EIV model is an implicit function formulation unlike our
previous work.

Now we explain our approach in terms of noise density
estimation: Let us assume that the noise free valuesxio and
the parameters[θ, α] are known such that the constraints
in Definition 2.1 are satisfied. Then, the noise can be es-
timated asεi = xi − xio, with xT

ioθ = α, i = 1, ..., n, and
‖θ‖ = 1. The noise is nothing but the deviation of the ob-
servation from the model described by the parameters. The
key question is to decide the metric that is to be chosen on
these deviations to estimate the model parameters. If the
noise density was known, one could easily formulate such a
metric using the maximum likelihood framework. However,
since the noise density is not known, we take the next best
approach — we use Parzen windows to estimate the noise
density using Definition 3.1.

For a set of observed data samples{xi}n
i=1, the ker-

nel density estimate of noise given the noise free samples
{xio}n

i=1 and parameters[θ, α] can be written as

f̂(ε|θ, α, xio) =
1
n

n∑

i=1

K(H−1(ε− (xi − xio))) (14)

under the constraintxT
ioθ = α, ‖θ‖ = 1. Let us define space

S .= {Θ .= [θ, α, {xio}n
i=1] | ‖θ‖ = 1, xT

ioθ = α ∀i =



1, .., n}. Then the model parametersΘ ∈ S, and assuming
the noise to be zero-mean, the maximum likelihood estimate
of model parameters is given by

ΘML = argmax
Θ∈S

f̂(0|Θ) (15)

Note that the above definition is not restrictive, since any
shift in the ε-space can be accounted for by a shift inxio

andα. In absence of a disambiguating prior, we assume a
zero-mean noise process.

In general, there might be multiple structures in the data,
all of which we might need to discover (akin to the Hough
transform). Thus, the estimated density functionf̂(0|Θ)
might be multimodal. In such a case, one seeks all local
minima of the density function. Consequently, we define
the parameter estimates as follows,

Θkml = argLmax
θ∈S

f̂(ε = 0|Θ) (16)

where argLmax denotes a local maximum. It can be shown
that the estimator above is a redescending M-estimator [12].

Θkml is a solution to a constrained nonlinear program.
The local maximum of̂f(·) can be sought in general by gra-
dient ascent. We now propose an iterative algorithm to seek
the modes of distribution̂f(·) given a starting point. Under
the constraint that the profile of the kernel,κ(·), is a convex
bounded function, the algorithm is guaranteed to increase
the objective function at each iteration and converges to a
local maximum.

Since,Θkml is constrained to lie in the spaceS, we can
define the objective functionq : S → R+ as

q(Θ) =
1
n

n∑

i=1

κ(−‖H−1(xi − xio)‖2) (17)

Now, let the derivative of the profileκ beκ′ = g. Assuming
that the initial estimate ofΘ is Θ(0), and using the convexity
of the profile, we see that

q(Θ)− q(Θ(0)) ≥ 1
n

n∑

i=1

g(−‖H−1(xi − x
(0)
io )‖2)

(‖H−1(xi − x
(0)
io )‖2 − ‖H−1(xi − xio)‖2) (18)

Defining the weightswi = g(−‖H−1(xi − x
(0)
io )‖2), we

seek the next iterateΘ(1) as the maximizer of right hand
side of (18), i.e.,

Θ(1) = argmin
Θ∈S

n∑

i=1

wi(‖H−1(xi − xio)‖2) (19)

The problem in (19) is similar to the ML estimation for i.i.d
Gaussian noise samples with identity covariance matrix, as
discussed in Section 2. It can be reduced to the following

minimization on the spacẽS = {[θ̃, α̃, {x̃io}n
i=1] | x̃T

ioθ̃ =
α̃, θ̃T H−2θ̃ = 1}

Θ̃(1) = argmin
Θ∈S̃

n∑

i=1

wi‖H−1xi − x̃io‖2 (20)

where θ = H−1θ̃ α = α̃ xio = Hx̃io (21)

whereΘ̃(1) = [θ̃(1), α̃(1), {x̃(1)
io }n

i=1]. By Theorem 2.2, we
can write

[θ̃(1), α̃(1)] = argmin
θ̃T H−2θ̃=1

n∑

i=1

wi((H−1xi)T θ − α)2 (22)

with x̃io being equal to the perpendicular projection
of H−1xi onto the plane defined by[θ̃, α̃]. Defining

A =
∑n

i=1 wi

(
H−1xixi

T H−1 −H−1xi

−xi
T H−1 1

)
andB =

(
H−2 0

0 0

)
, from the discussion in Section 2, we get

[θ̃T α̃] as the generalized eigenvector ofA with respect to
B corresponding to the minimum eigenvalue.Θ(1) can thus
be estimated using (20).

The above mentioned process is repeated iteratively with
new estimates to yield a sequence{Θ(n)}∞i=1 of parame-
ter estimates, and a sequence{q(Θ(n))}∞i=1 of function val-
ues. Clearly, forΘ = Θ(1), the right hand side of (18) is
positive, implying thatq(Θ(1)) ≥ q(Θ(0)). The sequence
{q(Θ(n))}∞i=1 is thus increasing and bounded above(sinceκ
is bounded), implying that it is convergent.

4. Experiments and Results

First, we empirically compare the performance of the algo-
rithm proposed in Section 3 with (a) the total least squares
(TLS) solution, and (b) Least Trimmed Squares(LTS) [11].
TLS, as discussed in Section 2, is the optimal estimator for
additive, white Gaussian noise (AWGN) and comparison
with TLS shows the comparable performance of our algo-
rithm to the optimal solution in case of often-used AWGN
model. To test the robustness, we compare our algorithm
with Least Trimmed Squares(LTS) which is a state-of-the-
art method for robust regression.

We use line fitting in 2D space as the testbed for our ex-
periment. The true samples(xio, yio) satisfyayio + bxio +
c = 0 whereb = c = 1, a = −1. The true values are set
asxio = i

50 − 1, andyio = xio + 1, i = 0, .., 100. The
data samples(xi, yi) are generated by adding uncorrelated
noise samples to(xio, yio). The noise samples are generated
from the Gaussian distribution (a standard noise model) and
two-sided log-normal distribution (to simulate outliers) with
several different variance values.

Figure 1 shows two sample realizations. At each value of
variance, we generated1000 realizations and computed the
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Figure 1: Points generated according to the model(xi, yi) =
(xio, yio) + εi and{εi} ∈ R2 (a) εi is gaussian with mean0 and
variance0.09, (b) εi is log-normal withM = −4 andS = 1.5.

Table 1: TLS, LTS, and KML estimates of(b, c) for (xi, yi) =
(xio, yio) + εi and{εi} ∈ R2 are i.i.d. Gaussian with mean0
and varianceσ2I2. Ground-truth values are(b, c) = (1, 1). Mean
and deviation of the estimated values for1000 experiments are
presented in the top and bottom four rows, respectively.

Mean
TLS LTS KML

σ b c b c b c

0.03 1.000 1.000 0.999 0.999 1.000 1.000
0.06 1.002 1.000 0.991 1.000 1.003 1.000
0.09 1.001 0.998 0.979 1.000 1.001 0.998
0.12 1.001 1.000 0.963 0.999 1.003 1.001

Standard Deviation
0.03 0.007 0.004 0.008 0.004 0.007 0.004
0.06 0.015 0.007 0.015 0.009 0.015 0.007
0.09 0.020 0.013 0.023 0.013 0.020 0.013
0.12 0.027 0.016 0.032 0.020 0.029 0.016

means and variances of the estimated parameters. Table 1
shows the results for Gaussian noise. The estimated param-
eters here are normalized with respect toa since the LTS
algorithm is implemented only for explicit function model.
The upper and lower halves of the table shows means and
variances of the estimated parameters respectively. TLS,
LTS, and KML denote Total Least Squares, Least Trimmed
Squares, and Kernel Maximum likelihood (proposed algo-
rithm). As we can see, the TLS is the best for this case, i.e.
has means closest to1 and lowest variances, but the perfor-
mance of our algorithm is comparable. LTS has a bias in
estimation and the variances are higher as well. This shows
that the proposed algorithm is comparable to LTS, which
is the optimal estimator for this case. Table 2 shows the
performance for log-normal noise. The table exposes the
non robustness of TLS. Its variance blows up as the noise
variance increases. Both KML and LTS perform well, with
KML being better for higher noise variances. We also note
that our algorithm is simpler than LTS and is faster by al-
most one order of magnitude.

We next demonstrate the ability of the algorithm to detect
multiple structures in data: The algorithm was used to esti-

Table 2: TLS, LTS, and KML estimates of(b, c) for (xi, yi) =
(xio, yio) + εi and {εi} ∈ R2 are i.i.d. log-normal with pa-
rametermu = −4 andS2 = σ2I2. Ground-truth values are
(b, c) = (1, 1). Mean and deviation of the estimated values for
1000 experiments are presented in the top and bottom four rows,
respectively.

Mean
TLS LTS KML

σ b c b c b c

0.5 1.000 1.000 0.990 1.000 1.000 1.000
1.0 1.002 1.000 0.976 1.000 1.003 1.000
1.5 1.149 0.996 0.953 1.000 1.001 0.998
2.0 5.314 1.497 0.919 0.996 1.003 1.001

Standard Deviation
0.5 0.016 0.009 0.019 0.011 0.016 0.009
1.0 0.038 0.019 0.025 0.014 0.025 0.015
1.5 2.087 0.084 0.038 0.019 0.038 0.020
2.0 186.2 24.79 0.065 0.032 0.044 0.024
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Figure 2: (a) Intensity image from perceptron Ladar USF Range
Database (b) Cartesian coordinates extracted from the range data
corresponding to (a).

mate plane parameters from 3D data extracted from range
images with planer patches. We used the perceptron ladar
range images from the USF Range Database [5]. Carte-
sian coordinates(xi, yi, zi) corresponding to pointsri in the
range image are first extracted. Estimation of (all) plane pa-
rameters is formulated as a robustEIV model parameter es-
timation problem. The algorithm has following steps: (1)
Estimate TLS estimateΘp for the parameters for each data
point due to points withinδ neighborhood ofp to provide
an initial guess. (2) Arrange the points and corresponding
parameter values in decreasing order of likelihoodq(Θp)
and put on a stackS. (3) Choose the value of parameters
from top of the stack, and apply the iterations according to
(19) till convergence. Append this value in the estimated pa-
rameter list. (4) Remove all points from stackS which are
within a perpendicular distanceτ from the estimated plane.
(5) Repeat steps (3),(4) till all points are exhausted.

The above steps were applied to the data depicted in Fig-
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Figure 3:Three estimated planes1,2 and3 overlayed on the data
samples. The planes are shown in different colors. (rotated version
of 2(b) for ease of illustration)
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Figure 4:Estimated planes4,5 and6 overlayed on the data sam-
ples. The planes are shown in different colors. (rotated version of
2(b) for ease of illustration)

ure 2(b). This data was extracted from the range image
shown in Figure 2(a). There are six planes to be detected
in this image. Figures 3 and 4 show the estimated planes
overlayed onto the data points. The algorithm was, thus,
able to detect all the instances, along with their parameters,
in this multiple structure detection problem .

5. Conclusions

In this paper, we presented a novel formalism to solve the
problem of robust model fitting using the linear EIV frame-
work. We used nonparametric density estimation to esti-
mate the unknown noise density and use a maximum like-
lihood approach for robust estimation of model parame-
ters. The implication of such an approach was that the
data could consist of multiple model instances and unknown
noise. We also proposed a provably convergent iterative al-

gorithm to solve the resultant optimization problem. The
algorithm uses iterative quadratic approximation to the like-
lihood function based on a variation formulation using the
convexity of density kernel functions. The performance of
the proposed algorithm favorably compares to two popular
algorithms — the Least Trimmed Squares (LTS), and the
Total Least Squares (TLS). Results for model fitting on real
range data are also provided.
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