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Abstract

A majority of the existing fingerprint recognition systems
are based on matching minutia features. Therefore minutiae
extraction forms a very critical step and greatly influences
the overall accuracy of the matching system. Poor ridge
structure and processing artifacts result in missing and spu-
rious minutia that can degrade the matching performance.
We propose a novel approach based on Steerable wedge fil-
ters to eliminate false positives resulting from feature ex-
traction. The proposed feature can also be used as a minu-
tia detector that operates directly on the gray scale images.

1. Introduction

The fingerprint image consists of rich visual information
and cues that human experts routinely utilize for fingerprint
recognition. This information and redundancy present in
the original data are lost during feature extraction where the
entire image is reduced to a set of minutiae features. Minu-
tiae represent local deviation in the flow of ridges (Figure
1). Although many different types of fingerprint features
have been identified, ridge endings and bifurcation account
for a majority of those features. Even this distinction is re-
dunant. Matching algorithms usually do not distinguish be-
tween these two features as slight variation in pressure can
transform a ridge ending into a bifurcation. Since most of
the existing fingerprint recognition algorithms rely solely on
minutiae and their structural relationship for matching [8],
minutiae extraction greatly influences the overall accuracy
of the matching system. Also, many of the feature extrac-
tion algorithms are sequential resulting in error propagating
through each of the stages. Poor ridge structure, errors in
accurately estimating the orientation field of the fingerprint
and artifacts generated during fingerprint image enhance-
ment result in the following type of errors (Figure 2)

1. Missing minutiae: The feature extraction algorithm
fails to detect existing minutia when the minutiae is
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obscured by surrounding noise, scars, creases or poor
ridge structures. This type of error cannot be elimi-
nated through post processing methods.

2. Spurious minutia: The feature extraction algorithm
falsely identifies a noisy ridge structure as a minutia.
The types of errors introduced in this case strongly
depend on the feature extraction process. When the
feature extraction is performed using binarization and
thinning, spurs, bridges, opposing minutiae, triangles,
ladders are some of the structures leading to false
minutiae detection [8].

Figure 1. Fingerprint image and commonly used minutiae
features (a) Bifurcation:(b)Ridge ending

Maio and Maltoni [7] proposed a feature extraction al-
gorithm that directly operates on gray scale images allevi-
ating many of the sources of error that are caused by bi-
narization and thinning. The algorithm is based on track-
ing the ridges by following the location of the local max-
ima along the flow direction. However, in poor contrast or
poor quality images where the local maxima cannot be reli-
ably located, false positives are still introduced. Therefore a
post-processing step is required where such spurious minu-
tiae features are eliminated. It has been shown that feature
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Figure 2. Errors in feature extraction. The spurious m

refinement can result in considerable improvement in the
accuracy of a minutia based matching algorithm [10]. We
propose an improved and intuitive feature set that clearly
distinguishes between genuine and spurious minutia. The
rest of the paper is organized as follows. Section 1.1 dis-
cusses prior related work. Section 2 describes in detail, the
problem definition and the proposed approach. Results of
experimental verification are presented in section 4. Con-
clusion and future work are discussed in section 5.

1.1. Prior related work

There have been several efforts at eliminating spurious
minutia though pruning techniques. These can be broadly
classified into (i)Structural post processing and (ii)Gray
level image based filtering.

Structural post processing methods prune spurious minu-
tia based on heuristics rules or ad hoc steps specific to the
feature extraction algorithm. Xiao and Raafat [13] pro-
vided taxonomy of structures resulting from thinning that
lead to spurious minutia and proposed heuristic rules to
eliminate them. Hung [6] proposed a graph-based algo-
rithm that exploits the duality of the ridges and bifurca-
tion. The binarization and thinning is carried on positive
and negative gray level images resulting in ridge skeleton
and its complementary valley skeleton. Only the features
with a corresponding counterpart are retained while elim-
inating the false positives. As opposed to complete elim-
ination in pruning, Bhowmick et al. [1] propose a scoring
scheme where each minutiae is assigned a score based on
its reliability. The score is determined considering the to-
pographical properties of the minutia and its neighborhood.
The approach is dominantly heuristic in nature.

Gray scale based techniques use the gray scale values in
the immediate neighborhood to verify the presence of a real
minutia. Prabhakar et al. [9] proposed a gray scale image
based approach to eliminate false minutiae. A 64x64 block
surrounding a minutia is taken and is normalized with re-
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inutiae along the crease have been highlighted.

spect to orientation, brightness and variance. The block is
then filtered using horizontally oriented Gabor filter [8].
The central 32x32 pixels are taken as features and the re-
sulting 1024 dimensional vectors is used to train a super-
vised classifier based on Learning Vector Quantization. To
compensate for the shift in minutiae location 25 different
windows around each minutiae location is tested separately.
The region is labeled as having minutiae if any of those 25
regions indicate the existence of a minutia. The method
gives accuracy of 95% on training data and 87% accuracy
on testing. However the disadvantage of this approach is
that the neural network requires a 1024 length feature vector
that considerably slows down the training of the network.
Maio and Maltoni [3] proposed a neural network based ap-
proach for minutiae filtering relying on gray scale features.
The minutia and non-minutia neighborhoods are normal-
ized with respect to orientation and are passed to a multi-
layer neural network that classifies them as ridge ending, bi-
furcation or non-minutia. The dimensionality of the feature
set is reduced by projecting the gray scale image on to a set
of basis images derived using Karhunen Leove Transform.
Both a positive and negative image of the neighborhood is
used to exploit the duality of the ridge and bifurcation. Al-
though the PCA improves the performance of the network,
the algorithm is not very accurate when we consider a two
class (minutia, vs. non-minutia) problem. Both the men-
tioned approaches improve the matching performance when
the minutia filtering is used as a post-processing step after
any of the existing feature extraction algorithms. It can be
observed that existing schemes that rely solely on the image
neighborhoods do not intuitively represent the nature of the
problem.

2. Minutiae Verification

There is a fundamental difference in the problem of
minutiae verification as defined by Prabhakar et al. [9]
and Maio et al. [3] (Figure 3). In either approaches, the



neighborhoods are categorized into (i)genuine ridge end-
ings (ii) genuine bifurcation and (iii) non-minutiae. The
differences between the approaches lies in the definition of
non-minutiae neighborhood. In Prabhakar et al’s approach,
the non-minutiae neighborhood is comprised of plain ridges
where as according to Maio and Maltoni, the non-minutiae
neighborhood population contains both plain ridges and ac-
tual false positives detected by their feature extraction algo-
rithm. The problem definition as posed by Maoi and Mal-
toni is a more challenging one and forms the basis of our
future paper, in which we have achieved significant results.
In this paper, we aim to solve the problem of distinguish-
ing non-minutia and minutia regions as defined by Prab-
hakar et al. .We treat both ridge endings and bifurcation
uniformly since their type can get exchanged with slight
variation of pressure. Also, the majority of the existing fin-
gerprint matching algorithms does not distinguish between
the minutia types during verification. Furthermore, we can
also empirically show the angular response of a ridge end-
ing and bifurcation to be equal.
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Figure 3. Minutiae neighborhood classes as proposed by
(a) Prabhakar et al. and (b) Maio and Maltoni

It is evident from figure 3 that the existence of the minu-
tiae is marked by local deviations in the ridge flow. We
propose a novel feature based algorithm that intuitively rep-
resents this local deviation.

2.1. Steerable Wedge Filters

Steerable filters have been used for some time to ana-
lyze local orientation in images. Steerable filters allow us
to compute the responses at different orientation as a linear
combination of the image’s response to a bank of basis fil-
ters. Freeman and Aldeson [5] first proposed the concept
of steerable filters. They constructed the basis filters using
directional derivatives of Gaussians that are either evenly or
oddly symmetric. The symmetry imposes an angular peri-
odicity of on these filter responses irrespective of the ba-
sic image structure. This introduces bimodal responses that
are clearly not desirable for such tasks as junction analysis,
detection or classification. Simoncelli and Farid [12] pro-
posed a framework for steerable wedge filters that alleviate
this problem. They proposed asymmetrical filters that ex-
hibit a unimodal response. The advantage of this approach
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Figure 4. Steerable wedge filters for N=5 (a)-(e) evenly
symmetric filters, (f)-(j)oddly symmetric filters

over using a set of oriented Gabor filter responses are as
follows

1. Since the Gabor kernel is symmetric, it has a bimodal
response with a period of 7 radians, where as the asym-
metric wedge filter has a unimodal response spanning
[—, 7] radians.

2. Steerable filters allows us to compute the response at
any arbitrary orientation as a linear sum of responses
to a set of fixed basis filters. With Gabor filters, this
is possible only if we perform interpolation between a
set of closesly spaced filters. This would mean having
a large set of oriented filters to begin with.

3. The proposed approach is more computationally effi-
cient, since the reponse at each orientation is obtained
by projecting the image onto the basis function. This
only involves computing the dot products as opposed
to convolving the image using a set of Gabor kernels.

A brief overview of these filters is provided for com-
pleteness. Further details are provided in [5] and [12].
The simplest example of a steerable filter is the directional
derivative of radial Gaussian given by,

&(r,6) = cos(9) 22 1) m
G2 (r, ) = sin() 2L-) @
g(r) = % 3)

The subscript indicates the derivative order, while the su-
perscript indicates the orientation. The filter can be synthe-
sized in any arbitrary orientation ¢ using

G? = GO cos(¢) + G/ sin(¢) )

The coefficients cos(¢) and sin(¢) are known as inter-
polation functions. This is the simplest case where we con-
sider just two basis filters. To achieve steerability with fil-
ters, it is sufficient that each filter is constrained to be a



weighted sum of the first N circular harmonics [5]. The ra-
dial component of the filter can be chosen independently to
be any arbitrary smooth function with compact support. The
angular components of the even and odd filters are given by,

N N
he (QS) = Z Wn COS("¢)7 ho(9) = Z wp sin(ng) (5)
n=1

n=1

The weights w,, are chosen to maximize the impulse re-
sponse E(¢) = h2 + h2. The cost function is also weighted
by ¢ to make the filter compactly supported in the angu-
lar domain. Since convolution is a linear operation, the re-
sponse to any arbitrarily oriented filter may be computed
using the linear combination of its responses to the basis
filters.

Figure 5 shows the response of the steerable wedge fil-
ters to a typical ridge, plain ridges and false positive neigh-
borhoods. The responses were calculated at 180 points uni-
formly spread in the interval [0,360] degrees. It can be ob-
served that

e Bifurcations are marked by three dominant directions,
two corresponding to the arms of the bifurcation and
the third corresponding to the parallel ridge flow. In the
figure, the third peak is wrapped around cyclically be-
tween 0 and 360 degrees. The response can be shown
to be identical in the case of a ridge ending.

¢ In distinction, the non-minutia region presents bimodal
response consistent with the parallel ridges in this re-
gion.

o The false positive has inconsitent peaks and dominant
multiple direction.

3. Classification

Itis obvious at this point that the angular response can be
used to effectively distinguish the two patterns. Also, it is to
be noted that if a symmetric filter was used, the response of
the two arms of the bifurcation could not be resolved from
the response of the plain ridges. This section presents the
decision decisions and results for the classifier.

3.1. Fisher Discriminant Analysis

We investigated if it was possible to linearly separate the
data. We did this by finding if there is a plane in the d-
dimensional feature space that can separate the data into
two distinct classes. This can be accomplished by com-
ponent analysis techniques such as PCA (Principal Com-
ponent Analysis) and FDA (Fisher Discriminant Analysis).
We investigate FDA as it finds the line along which there

is maximum separation between the two classes. It can be
shown [4] that the projecting vector is given by

w = Sy'(m;—my) (6)
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Here represents Z a d-dimensional vector (180 in our case),
D, and D- represent the genuine and impostor classes and
m; represents the mean vector in the respective class. The
overlap along the fisher projection (Figure 6) indicates that
the classes are not linearly separable. This was further con-
firmed when a linear perceptron network failed to converge
on the training data.
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Figure 6. Large overlap in the Fisher projection of the two
classes indicate the data is not linearly separable

3.2. Principal Component Analysis

The response is computed at 180 points in the interval
[0,360]. In order to avoid the long training times associated
with such high dimensional feature we reduce it to a lower
dimensional space using PCA technique. Also, it is interest-
ing to observe the Eigen vectors for additional insight into
the problem domain. It was also found that 9 Eigen vectors
are sufficient to represent the 180 dimensional feature space
accurately as they contain nearly 99% of all the variance.

3.3. Neural Network

The analysis of the data through Fisher discriminant
analysis and the failure of the perceptron network to con-
verge motivated us to use a feed forward back propagation
network. It is well known that a multi-layered feed forward
network is capable of classifying non-linearly separated
data. Furthermore we used resilient back propagation [11]
algorithm to train the network. Though gradient descent
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Figure 5. Response of the wedge filter to prototypical neighborhoods (a)Genuine minutia(b)Plain ridge and (c)False positive

methods are guaranteed to converge to an optimum value,
the rate of convergence (gradient) steadily decreases. Fur-
thermore this problem is also aggravated by the highly non-
linear response of the sigmoid activation function. Even
when the error is very large, the weights are updated by
small values as the output of the neuron is ’squashed’ by the
sigmoid function. The resilient back propagation algorithm
by considering only the sign of the derivative for updating
the weights. The change in weight is determined by a sep-
arate parameter. It was found that the resilient propagation
network converges roughly more than 10 times faster than
the simple back propagation algorithm and even networks
includes momentum parameter and adaptive learning rates.

3.4. Support Vector Machines

Our initial experiments with the support vector machine
indicated that although the accuracy of the classifier is
marginally better than the neural networks, the classifier re-
quires a very large number of support vectors to achieve the
same level as classification as the neural network. It appears
that for this particular problem, the neural network is able
to generalize the distinctions more efficiently.

4. Experimental Evaluation
4.1. Test Data

40 randomly chosen fingerprint images from among the
2000 images in a private IBM database were used to extract
genuine and impostor neighborhoods. The minutia features
in the fingerprint images were manually identified using a
semi-automated tool that uses the enhancement and feature
extraction algorithm described in [2]. The features were

visually inspected to remove outliers. The training set con-
sisted of 1033 true minutiac 900 false minutia neighbor-
hoods. The testing data consisted of 1000 true and 1000
false minutia neighborhoods. All the blocks are normalized
with respecting to orientation and made horizontal. How-
ever there are still variations due to the valumetric differ-
ences between the blocks. To eliminate this, the blocks were
then enhanced using a Fourier domain based filtering algo-
rithm(Figure 7) also described in [2] resulting in a high
contrast image that also removes the noise along the ridges.
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Figure 7. Normalized minutiae neighborhoods

4.2. Training

The neural network consists of a feed forward back prop-
agation network with resilient back propagation learning
algorithm. Two separate networks were trained using the
same training data. The raw 180 dimensional vectors were
trained using a 180-30-1 neurons network. The input to the
other network consisted of 9-dimensional Eigen vector co-
efficients and was trained using 9-7-1 networks. The neural
network was simulated using MATLAB™neural network
toolbox. The network converged to a MSE of 0.013 in 2500
iterations. It is also observed that because of the resilient
propagation algorithm, the PCA features do not converge
significantly faster than 180-dimensional the raw feature
vector.
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Figure 8. Error distributions for the testing data using 180
dimensional inputs

4.3. Testing

The network was tested using 1000 genuine and 1000
impostor features. The error distribution resulting from the
simulation is shown in figure 8. FAR indicates the false
acceptance rate (spurious minutia) and FRR indicates the
false negative rate (missed minutia) TERR gives the total
error due to missed and spurious minutia. The algorithm
provides an accuracy(genuine accept rate) of 94.75% at the
EER(Equal error rate) point. This is significantly better than
the 87% accuracy mentioned by Prabhakar et al. However,
we are quick to point out that any such comparison is made
on the following assumption; based on the problem defini-
tion proposed by Prabhakar et al., the minutiae and plain
ridges are universally defined and hence we assume that our
dataset is very representative of the problem description.

5. Conclusion and Future Work

We have presented a novel feature based approach for
minutiae verification in fingerprint images. Future work
will involve a more objective comparison with previous
work through complete implementation of Prabhakar et al.
and Maio et al” work. We are also looking at the possibil-
ity of using the classifier for automatic minutia detection
directly from gray scale images. Also, since the classifier
gives a continuous output, the resulting value can also be
used as a quality metric for the minutiae neighborhood. We
are working on the possibility of including this metric dur-
ing matching. Since the typically encountered fingerprint
contains around 40-50 minutiae the algorithm is also com-
putationally efficient.
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