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Abstract

A greedy algorithm for constructing a variable length,
spatial feature vector of a binary image, depending on the
size and diversity of the image database, is proposed. The
novelty of the algorithm lies in iterative construction of the
elements of the feature vector for some resultant images ob-
tained by xor-ing the given image with a few pseudorandom
synthetic masks. The classical Euler number and the two
basic connectivity features from which it is derived, namely,
the number of connected components and the number of
holes, are used to finally generate a unique index (feature
vector) for each image in the database. The computation
process, being purely in the integer and Boolean domain, is
very fast and easily implementable. It is found to converge
within 3 iterations for a logo image benchmark database
consisting of 1034 images. A ��� -tree data structure has
been used for efficient storage and retrieval of the images
based on the proposed feature vector. The method is partic-
ularly suitable for object type of images.

1. Introduction

Topological properties of a digital image typically rep-
resent the geometric shape of the image. These proper-
ties are resistant to the changes made to the image, such as
stretching, rotation, scaling, translation, and other rubber-
sheet transformations. Euler number of a binary image is
an important topological feature, defined as the number of
connected components minus the number of holes [5, 7]. It
can be used as one of the major features for image classifi-
cation and image indexing.

Euler number has numerous applications in medical di-
agnosis, viz. for detection of malaria infected cells. Re-
cently, it is also used as a discriminating feature to locate
many cervical disorders [6]. It also finds usage in opti-
cal character recognition, document image processing [10],
shadow detection [9], and in constructing feature vectors
[11]. The strength and elegance of Euler number lies in its

simplicity, ability to capture the overall structural property
of a binary image, and easy implementability. Furthermore,
availability of low-cost on-chip computation of Euler num-
ber [3] makes it a very convenient feature for image index-
ing. Recently, several attempts have been made to exploit
the strength and usefulness of Euler number for handling
gray-scale images [4] with the help of “Euler vector”, which
is constructed from the Euler numbers corresponding to the
significant bit-planes of a gray-scale image.

Although Euler number has certain discriminating abil-
ity, it alone cannot serve the purpose of uniquely identifying
or indexing all the images in even a small or moderately-
sized database. Hence, a few additional features, if judi-
ciously selected, along with the Euler number, may per-
form the desired task of discriminating all the images in a
database.

In this work, we use Euler number, as well as the two
basic spatial features from which it is derived, namely, the
number of connected components, � , and the number of
holes, � , along with a masking technique for classifying
the images with higher efficiency. The striking feature of
this simple yet novel approach lies in extracting these dual
characteristics (i.e., � and � ) iteratively from a few de-
rived images obtained by Boolean xor-ing the given image
with synthetic pseudorandom masks. The ultimate objec-
tive of the procedure is to generate a unique index (feature
vector) for each image in a binary image database. The pro-
posed algorithm is easily implementable and usually con-
verges within a small number of iterations. The algorithm
has been tested on two different image databases, and the re-
sults are found to be very encouraging. For example, when
applied on a logo database of 1034 binary images, the algo-
rithm converges within 3 iterations, thereby requiring only
3 randomized masks to uniquely characterize all of them.
For this database, the feature vector consists of at most 9 in-
tegers, and on the average, 5 integers. Importantly, there is
no floating point computation involved in the entire process
unlike indexing with features like center of mass, moments,
etc. [8].



2. Proposed work

Given a database consisting of � binary images, the fi-
nal feature vector must have � distinct values so that there
is always a one-to-one correspondence between each image
and its representative vector. We here show that, simply the
Euler number along with the number of connected compo-
nents and the number of holes of the original image, and
those computed iteratively for the derived images, can be
used to generate the desired feature vector of the original
image.

2.1. Euler Number: the primary feature

An efficient and easily implementable algorithm for
computing the Euler number of a binary image is based on
the exhaustive study of the local patterns [7], which form
the following set of 2 � 2 bit patterns, called bit quad:	�

���������������� ������������ ������������ �������� �"!	$#%����� ������ ��� � ������ ��� � ������ ��� � ����&� �"!	$'%� ���(������ � � �)������ �"!

If * 
 � * # � * ' be the respective number of patterns from the
sets
	+
 � 	$# � 	 ' in a binary image , , then the Euler number

for , is given by Eqn. 1:-�. ,0/ ��1 
2 . * 
43 * #05�6 * ' / in 4-neighborhood
2 . * 
43 * #7386 * ' / in 8-neighborhood
(1)

It may be noted that, the bit quads in the sets
	 


,
	 #

, and	$'
are distinct. Hence, each of the 10 bit quads, when enu-

merated in row major order, yields a unique 4-bit number,
thereby enabling the formation of a Look Up Table (LUT)
containing the 10 unique elements of the following modi-
fied sets:	�

�:9 � � 6 �<;=�<>@?	$#%�:9 � ;A� �CB � �D� �FEG?	 ' �:9IH �KJ�?

We have implemented the algorithm [7] for computing
the Euler number in 8-neighborhood using the above LUT.

2.2. Number of connected components and number
of holes: the secondary features

For a binary image database L �M9 ,ON ?CPNFQ 
 , there may
exist several images having identical values of Euler num-
ber. Let there are R distinct Euler numbers, S 
 � S # �ITUTITV� SXW ,
for all the images in L . Let Y[Z be the subset of L , which
contains images with same Euler number SFZ . Since SKZ can
not classify the images in Y�Z any more, so the number of
connected components, � , and the number of holes, � ,
where, � 3 � � -

, can be chosen as the features to

(partially) segregate the images in each subset Y@Z of L .
We have adopted the algorithm given in [5] for finding out
the number of connected components, � . ,OND/ , of each im-
age ,\N . Now, with the help of the tuple of two features] � . ,\N^/ � � . ,\N^/`_ , we have devised a scheme that can be em-
ployed to distinctly index all � images in the database L .

2.3. Iterative XOR-ing with randomized masks

In order to differentiate two or more binary images
with identical

] � � � _ , an artificial binary mask is gener-
ated pseudorandomly. When this mask is Boolean xor-
ed pixel by pixel with an image , N having the tuple] � . , N / � � . , N /`_ , a new image a N will be produced with
the tuple

] � . a N / � � . a N /<_ , which is possibly different from] � . , N / � � . , N /`_ . In spite of its random characterization,
a particular mask, however, may not be able to segregate
all images in a particular set

9 , N ? having identical
] � � � _ ,

and therefore, more randomized masks may be required to
resolve the conflict. Hence, generation of the randomized
masks are done over several iterations in our algorithm, so
that, after the final iteration, each of the � images in the
database L would be distinctly indexed.

It may be observed that images in the database L may
have nonuniform sizes. Hence, in order to have the compat-
ibility of xor-operation between any image of L and a mask
of predefined size, all images in L are normalized to the size
of the mask. Further, at each iteration, a single mask is pro-
duced for all images in L , and the masks over all iterations
have identical predefined size, b��cb . In our experiments,
we have considered b ��6DdeH pixels.

Let f�g be a square matrix of size h&��h (such that h di-
vides b ), where, f g .ji �`k /�l 9 � � � ? for �nm i �<k m h . The
matrix f g is constructed based on an eight-bit positive in-
teger o , which is generated randomly each time for deciding
each element of f g . Let o .pi �<k / be the random number that
decides the entry f g .ji �`k / . Then the decision for f g .ji �`k /
is taken as follows:

f g .ji �<k / � 1 � if o .ji �`k /7q�r� otherwise
(2)

In Eqn. 2, the parameter r , which is an integer, plays a
crucial role in determining the ratio of the number of 0s to
that of 1s in f+g . It can be shown that, based on uniform
distribution of o in the integer range [0,255], the probability
that the number of 0s is same (or, differs by at most unity, ifh is odd) as that of 1s in f g , would be maximum for r �rDs . � � 6 E / . Further, departure in the value of r from r�s will
reduce the probability that the number of 0s is same as that
of 1s in f g . The generation of the synthetic mask depends
on the generation of the corresponding f g in the concerned
iteration, and therefore, changing the value of r will play a
significant role in designing the masking scheme, if desired.



C, H

Images
with
same

...

I  1

I  2

I  3

I   N

Images
with
same

E

Images
with
same

E

C, H C, HE
distinct

with
Images

N

Mask
Randomized

Iterative Masking ProcedureImage Database

Euler
No.(E)

...

Norm−
alize

Sets of images

Level  i

with distinct Euler nos.

Figure 1. A schematic layout of the proposed method.

However, we have not changed r in our experiments and
have considered r � r s over all iterations for all cases.

Let fntvuxwg be the matrix that is generated at the ( y )th it-
eration, such that, the Hamming distance z|{If tvuxwg � f txuj} 
 wg ~
between f tvuxwg and f tvup} 
 wg , y�� � , f t s wg ���

, satisfies the
criterion stated in Eqn. 3.

z { fntvuxwg � f�tvuj} 
 wg ~ � g�� Q 
 g�� Q 
 f�tvuvwg .ji �<k /���fntxuj} 
 wg .pi �<k /���
(3)

where � f�tvuxwg .ji �`k /���fntvup} 
 wg .ji �`k /� � � if f tvuxwg .ji �`k / � f tvuj} 
 wg .ji �<k /F�� � � otherwise T
Let � tvuxwg be the randomized synthetic binary mask of

size b�� b generated in the ( y )th iteration. ��tvuxwg is gener-
ated from f tvuvwg as follows. Let � . � bO��h"/ be the length of
the square block that acts as the “building block” of � tvuxwg .
That is, � txuvwg consists of h # building blocks, where, each
building block is made up of � # pixels (all of which are ei-
ther 0 or 1 for a particular building block). Then ��tvuxwg is
constructed as shown in the following equation:

� tvuxwg .ji �<k / � f txuvwg .�� � *e/ � (4)

where,
� ��� i��� � * ��� k��� �� i � � k�� ��m i m b � ��m k m b �

such that, the mask � tvuxwg is different from the one in the
preceding iteration, � txuj} 
 wg , y�� � , by at least ��� # pixels,
in conformity with Eqn. 3.

Let a tvuxwN be the image obtained when xor-operation (rep-
resented by ‘ � ’) is performed between , N and the mask� tvuvwg in the ( y )th iteration. That is, a tvuxwN � , N ��� tvuxwg .
An example of xor-operation between a sample image with
a randomized mask is shown in Fig. 3.

Let
9 ,\N ? be a subset of images with all of its xor-ed im-

ages
9 a tvup} 
 wN ? having identical

] � � � _ in ( y 3 � )th iteration.

�A��� � � ��� �O¡£¢¥¤§¦©¨ª « ¤§¦©¨��� �
Figure 3. A randomized mask (mask

¢ ¤x¦©¨ª shown in Fig.
4) overlaid on a sample image to obtain the xor-ed result.

When each image , N in this set is xor-ed with � txuvwg in ( y )th
iteration to get a set of images

9 a£tvuvwN ? �:9 ,\NA�(��tvuvwg ? , there
would be possibly different

] � � � _ tuples in the set
9 a£tvuxwN ? ,

thereby offering further classification of the images in ( y )th
iteration of the algorithm. The iterations are carried on until
all images with same Euler number have distinct ordered set
of tuples, ¬ ] � � � _V­ , considered over all required number of
iterations. In effect, all � images in the database L have �
distinct feature vectors (of possibly unequal sizes), each of
which is of the form ® ] - Ne_U¬ ] �+tvuxwN � �8tvuvwN _F­ uj¯=°u Q sG± correspond-
ing to a unique image ,²N(l³L , where, ´ is the total number
of iterations required for L , and

] � t s wN � � t s wN _ is
] � � � _ for, N without any xor-ing. A schematic representation of the

entire algorithm is shown in Fig. 1. Fig. 2 demonstrates
the iterative xor-ing procedure and generation of requisite
feature vectors on a small representative set of 8 images.
The xor-ing procedure converges just in 2 iterations, which
indicates the speed and efficiency of the proposed method.
The randomized masks used in the two iterations are shown
in Fig. 4. It may be noted that, out of the 8 images com-
prising the exemplary set in Fig. 2, the length of the feature
vector for image , #Kµ s (

] � � � _ not required) is just 1, that
for , 2 
`¶ (no xor-ing required) is � 5�6 � B , whereas, the
same for images , # 2K2 and , ' sKs (xor-ed up to 2nd iteration)
is � 5 6 � B � E each, and for the remaining 4 images (xor-
ed in 1st iteration only), length of the feature vector for each
becomes � 5�6 � 6���d . Thus, the length of the feature vector
in the proposed algorithm may vary from image to image.



� �7·D¸ ¹Cº`»C¼ � ¦p½�¾ ·[¸ ¹Iº¿»À¼ � � Á�Á�·G¸ ¹Cº¿»C¼ � ��� ¾ ·[¸ ¹Cº�»À¼ � � Â ½ ·[¸pÃ�º¿»À¼ � ��Ä Á
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« ¤ � ¨� Á�Á ·[¸pÆeºK¹V¼ « ¤ � ¨� ½�½ ·D¸ÉÈDºF¹F¼
Figure 2. Demonstration of the proposed algorithm on a representative set of 8 images for generation of feature vectors of varying
sizes by iterative xor-ing with randomized masks. For the images in the 1st row, their

¸pÊ ¤Ë½¿¨ º�Ì ¤Ë½¿¨ ¼ are given in the figure, where,
7 images have same Euler number ( Í = ÎÐÏ ), and one (

��� Â ½ ) has a different Euler number ( Í =2). Further, among 7 images withÍ = ÎÐÏ , excepting the image
�AÁ ¦ ª with

¸pÊ ¤Ë½¿¨ º`Ì ¤Ñ½¿¨ ¼7ÒÓ¸j»eº`ÃC¼ , each of the 6 images has
¸pÊ ¤Ë½¿¨ º`Ì ¤Ñ½¿¨ ¼7ÒÓ¸ ¹Iº¿»À¼ . Hence, these six

images with
¸ Í ¼K¸pÊ ¤Ë½¿¨ º¿Ì ¤Ë½¿¨ ¼$ÒÔ¸ ÎÐÏ ¼K¸ ¹Cº¿»C¼ are selected for xor-ing in iteration (1). The 2nd row shows the xor-ed images in

iteration (1) and the resultant tuples,
¸pÊ ¤x¦©¨ º¿Ì ¤§¦©¨ ¼ . In the 2nd row, excepting the two images, « ¤§¦©¨� Á�Á and « ¤§¦©¨� ½�½ , all other images have

distinct
¸pÊ ¤§¦©¨ º¿Ì ¤§¦©¨ ¼ , and the formation of their feature vectors, therefore, ends here. Since the images « ¤§¦©¨� Á�Á and « ¤§¦©¨� ½�½ have identical¸pÊ ¤§¦©¨ º¿Ì ¤§¦©¨ ¼ , their parent images,

�Õ� Á�Á
and
�=� ½�½ , are considered in the 2nd iteration, where they get xor-ed with the corresponding

randomized mask, and their
¸pÊ ¤ � ¨ º¿Ì ¤ � ¨ ¼ become different, as shown in 3rd row of the figure. Thus the process terminates after

iteration (2).

Similar images are more likely to have longer feature vec-
tors, since they cannot be distinguished among themselves
with a small number of features, whereas, an image, pos-
sessing lesser similarity with the rest of the images in the
database, is likely to have a shorter feature vector.

2.4. Variable feature vector

As evident from the Sec. 2.3, the feature vectors ob-
tained for various images are characterized by variable fea-
ture length, depending on their structural behavior apro-
pos the iterative xor-ing with randomized masks, as used
in our algorithm. In most of the conventional procedures,
the length of a feature vector (sometimes the feature vector
itself) is predefined. In contrast, adaptive construction of
feature vectors, depending on the need and the topological
properties of an image, is done here based on the output of
each iteration of the randomized masking procedure. This
resembles a greedy algorithm, and provides an effective and
near-optimal choice of feature vectors. Furthermore, the di-
mensionality of the feature vector that has maximal length
in the concerned space, would increase automatically with

¢ ¤§¦©¨ª ¢ ¤ � ¨ª
Figure 4. Randomized masks generated at iterations (1) and
(2), and used for xor-operation with the images shown in
Fig. 2.

the execution of the algorithm on a database of larger size
and diversity. The number of iterations in the randomized
masking procedure increases with an appreciable increase
in the size and diversity of the image database.

2.5. Algorithm

1. Set parameters h � r � b � � (default: 8, 127, 256, 8).

2. Find the Euler number
- N of each normalized image



, N l&L � ��m � m � , � being the number of images
in L .

3. If there are R distinct Euler numbers obtained in step
(2), then construct R subsets of L , such that each sub-
set Y Z � �&m¥Ö×m R , contains images with same Euler
number.

4. For each image ,²N�lcY Z , � Ö � ��m�Ö�m R , find the tuple] � t s wN � � t s wN _ , and make it the first entry of the ordered
set of

] � � � _ tuples, to get ¬ ] � t s wN � � t s wN _ ­ , for , N .
5. Construct the subsets of subset Y�Z , � Ö � ��m�ÖØm R ,

such that for each subset Y�Z , each of its subsets con-
tains images with identical

] � � � _ . Let the ( Ù )th sub-
set of Y[Z be Ú\Z Û Ü that contains the images having iden-
tical

] � � �c_ (and obviously, identical Euler number).
If any subset Ú\Z Û Ü contains only one image, then for
that subset the subsequent steps of the algorithm may
be skipped, and final solution can be generated in step
(14).

6. Initialize y � � .
7. Generate a randomized mask �Ýtxuvwg conforming to Eqn.

5, such that the criterion in Eqn. 3 is satisfied. Put the
corresponding f tvuxwg in the final solution in step (15).

8. For each image ,²N+l×Ú Z Û Ü , evaluate a£txuvwN � ,\N�����txuvwg .

9. For the xor-ed image a tvuxwN corresponding to each im-
age ,\NÞl�Ú Z Û Ü , find the number of connected com-
ponents, �(tvuxwN , and the number of holes, �8txuvwN . Ap-
pend the tuple

] �(tvuxwN � �&tvuxwN _ in the ordered set of
] � � �c_

tuples, in order to augment the previous ordered set,¬ ] �+tÑ°<wN � �&tÑ°<wN _ ­ uj} 
° Q s , to get the updated ordered set,¬ ] �+tÑ°<wN � �&tÑ°<wN _F­ u° Q s , for ,\N .
10. Construct the subsets of Ú Z Û Ü , such that each subset

contains images with identical
] �(tvuxwN � �8tvuvwN _ . If any

of these subsets contains exactly one image, then that
subset is not considered in further iterations, and di-
rectly output to the final solution in step (15).

11. Execute steps (8) – (10),
� Ù .

12. Execute steps (8) – (11),
� Ö .

13. For each Ö , �8mÔÖ�m R , remove all the subsets ÚOZ Û Ü ,
which are used as input in steps (10) and (11) , and
(re)name all the subsets obtained in steps (10) and (11)
by Ú\Z Û Ü .

14. If there is at least one Ú²Z Û Ü containing at least two im-
ages, then increment y by unity, and go to step (7); oth-
erwise, assign ´ � y , and go to step (15).

15. Return the final solution, consisting of:

(i) Number of masks (iterations), ´ .
(ii) Ordered set of generator matrices,

] f tvuvwg _ u Q °u Q 
 ,needed to reconstruct the masks during image re-
trieval.

(iii) The derived feature vector for each image ,ßN lL , which is an ordered set of its all relevant] � � � _ tuples, preceded by its Euler number:] - N _ ¬ ] � tvuxwN � � tvuvwN _ ­ uj¯=°u Q s , �$m � m � .

2.6. Data structure for storing images

In order to store and retrieve the images using the pro-
posed algorithm, a �@� -tree [2] is used as the basic data
structure. It may be noted that, the quadtree, which is com-
monly used in the existing image indexing methodologies
[1], is not suitable for storing the feature vectors (the im-
ages, thereof) derived in this algorithm, since the quadtree
would become very unbalanced because of the unbalanced
distribution of

] � � � _ tuples in the ��� plane (see Fig. 5).
A �@� -tree, on the other hand, would be always balanced and
would ensure searching of an image in logarithmic time,
since it splits a 2-dimensional plane alternately about the
median w.r.t. x-coordinate and about the median w.r.t. y-
coordinate, such that at each level of the ��� -tree, the points
stored at any two nodes differ in number at most by unity.

Let there be à tvuxw distinct tuples of
] � tvuxw � � txuvw _ produced

in the ( y )th ( y � � � � � 6 �ITUTUTF� y ) iteration of the algorithm for a
database L containing � images. At ( y )th iteration, the cor-
responding feature tuples,

] � tvuxw � � tvuxw _ , on a 2-dimensional
plane, namely the ��� plane, give a planar set of points,
which may be stored in a 2-dimensional ��� -tree. Let á tvuvw
represent the �@� -tree that is constructed at the ( y )th itera-
tion. Then á tvuxw contains à tvuxw leaf nodes and has â . log à tvuxw /
height, where, each leaf node contains a unique

] � � � _ tu-
ple that may be the

] � � � _ tuple for more than one image
(after xor-ing with mask � tvuxwg , if y×� � , and original, ify � � ) in L .

It is quite evident that, if at least one of the leaf nodes
of á tvuvw has more than one image of L associated with it,
then only the algorithm proceeds for ( y 5 � )th iteration. For
each such leaf node ã , having more than one associated im-
age, in á txuvw , another ��� -tree á�txuvä 
 wå would be created in
( y 5 � )th iteration. The ��� -tree á txuvä 
 wå contains all the dis-
tinct

] � tÑ°<ä 
 w � � tÑ°<ä 
 w _ tuples of only those images which
are being associated with the same node ã of á tvuvw . The
process is repeated until each leaf node in the �@� -tree has
exactly one image associated with it, that is, until y reaches´ , the total number of iterations as stated in step 15(i) of the
algorithm in Sec. 2.5.
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3. Results and discussions
We have used 2 sets of binary images for our experi-

ments: (i) database D1 of 1034 logo images, received on re-
quest, from Prof. Anil K. Jain and Aditya Vailya of Michi-
gan State Univ., USA, and, (ii) database D2 of 106 logo
images collected from the Internet.

The proposed method is implemented in C on a
Sun Ultra 5 10, Sparc,

6 BDB�æ �èç , the OS being the SunOS
Release 5.7 Generic. A tool called CONFERM (Connectiv-
ity Features with Randomized Masks) has been developed
for this purpose. The average execution time for both the
sets is given in Table 1. Table 2 shows in brief the results
obtained on databases D1 and D2. That the output for D1
varies with different values of h , and these output again vary
with the output for D2 for different values of h , reflects the
randomized and adaptive nature of the proposed algorithm.
In table 2, é denotes the average length of feature vector for
the database L , which is given in Eqn. 5, where, é N denotes
the feature vector length of the image , N l×L .

é � �� NFQ PêNFQ 
 é N (5)

Table 1. Average CPU time in seconds per image for
databases D1 and D2

D1 D2Í ºX¸pÊ ¤Ë½¿¨ º¿Ì ¤Ë½¿¨ ¼ 0.476 0.508¸pÊ ¤Ëëv¨ º¿Ì ¤Ëëv¨ ¼ ëvìDíëvìî¦ 0.422 0.120
Total 0.898 0.628

To cite a few examples, four sample images from D1
and another four from D2 have been shown in Fig. 6 and
Fig. 7 respectively. The images have been selected so as to
represent the possible output vectors of the proposed algo-
rithm. For instance, in Fig. 6, ,\ï µF
 is the only image in D1
with Euler number 38, and therefore, no other feature is re-
quired to uniquely index this image. The next image shown,

Table 2. Results for databases D1 and D2
D1 D2ð 8 16 32 8 16 32¸ Í ¼ 62 62 62 53 53 53

#
¸pÊ4º¿Ì)¼ ¤Ë½¿¨ 247 247 247 79 79 79

#
¸pÊ4º¿Ì)¼ ¤§¦©¨ 710 948 1007 106 106 106

#
¸pÊ4º¿Ì)¼ ¤ � ¨ 967 1034 1034 – – –

#
¸pÊ4º¿Ì)¼ ¤ � ¨ 1034 – – – – –ñ

5.16 4.57 4.45 2.51 2.51 2.51

#
¸pÊ4º¿Ì)¼ ¤Ëëv¨ = No. of distinct vectors after ( ò )th iteration.

Each feature vector after ( ò )th iteration is given by:¸ Í ¼K¸pÊ ¤Ë½¿¨ º¿Ì ¤Ë½¿¨ ¼K¸pÊ ¤§¦©¨ º`Ì ¤§¦©¨ ¼�óKóXóV¸pÊ ¤Ëëv¨ º¿Ì ¤Ëëv¨ ¼ .
on the other hand, needs the vector

] � t s w � � t s w _ � ] � � � 6 _
along with its Euler number

3 �^� since there are some other
images in D1 having Euler number

3 �^� ; there is, how-
ever, no other image in D1 with Euler number

�Ô3 �D� and] � t s w � � t s w _ � ] � � � 6 _ . Hence, the vector
] 3 �^� _I¬ ] � � � 6 _F­

is a distinct vector with one-to-one correspondence with im-
age , 
 ï 2 , in the feature space of D1. Similar justifications
hold for the vectors shown corresponding to the other two
images in Fig. 6. The four images and their respective vec-
tors, shown in Fig. 7, also obey the same one-to-one corre-
spondence in the feature space of D2. In Fig. 5, the reduc-
tion in frequency of occurrences of identical

] � � � _ tuples
with advancement of iterations in the algorithm exhibit the
segregating power of the proposed indexing scheme.

4. Conclusion and future works

This work introduces a novel indexing technique for bi-
nary images by employing a greedy algorithm defined over
a small set of traditional topological features of binary im-
ages. An efficient randomization is imparted to the algo-
rithm to expedite the process and to make it adaptive to
the database size and diversity. The iterative xor-ing pro-
cedure has an inherent property of capturing the topological
features of an image in near-optimal number of iterations,
which shows the elegance and strength of the algorithm.

There lies further scope for improvement of the proposed



�ÕÄ Â ¦ � ¦ Ä Á � ¦ Â¿� �Õ� Â ¦� Ä Â ¦ ·G¸j»IôÀ¼� ¦ Ä Á
·G¸ Î ¹I¹V¼ ¬ ¸ ¹IºX¹ Ï ¼ ­� ¦ Â¿�7·G¸ Î ¹ Ï ¼ ¬ ¸ ¹IºX¹F»C¼<ºV¸pÆeº¿»C¼ ­� � Â ¦ ·G¸ Î »C¼ ¬ ¸ ¹Cº¿ÈÀ¼<ºF¸pÃeº<ÆI¼<ºF¸pÃeºK¹FÅÀ¼ ­
Figure 6. 4 sample images of database D1 with their¸ Í ¼ ¬ ¸pÊ7º�Ì)¼ ­ .

�AÂ ¾ �A� � �A� Â �AÂ��� Â ¾ ·[¸ Î ¹I¹V¼� � �7·[¸ Î »C¼ ¬ ¸ ¹Cº È�¼ ­� � Â7·[¸ Î ÈÀ¼ ¬ ¸ ¹Cº¿ÃC¼<ºV¸ ¹CºK¹V¼ ­� Â��7·[¸ ÎÐÏ ¼ ¬ ¸ ¹Cº�»À¼<ºV¸j»^ºK¹V¼<ºV¸ ¹Cº Ï ¼ ­
Figure 7. 4 sample images of database D2 with their¸ Í ¼ ¬ ¸pÊ7º�Ì)¼ ­ .

method. Depending on the mask that is randomly generated
at a particular iteration, the feature vectors of the images
are computed. The average feature vector length, é , there-
fore, may vary for a given image database, depending on
nature of the randomized masks produced during the exe-
cution of the algorithm. The parameters h � r � b � � will have
some effects on the generated set of feature vectors for all
the images in the database, and on é there of. This is evi-
dent from Table 2, where the results do vary with change inh . The optimal solution for the set of distinct feature vec-
tors is, therefore, very difficult to find. Experimentation on
the controlling parameters, h � r � b � � , would also produce
some interesting results, which would be explored in a fu-
ture work.

The proposed algorithm, with suitable modifications, can
also be used to uniquely index a new image, when the new
image has to be inserted in an existing database. It may
also be noted that, the algorithm may produce two distinct
feature vectors for two images that are obtained by differ-
ent 2-dimensional transformations (linear or nonlinear) of
the same image. This is due to the fact that, after the xor-
operation of the two (different w.r.t. transformations) im-
ages with the same mask, the resultant images may not pos-
sess identical

] � � �c_ tuples. Presently, we are working on

designing a suitable masking scheme that would be invari-
ant to image transformations.

The algorithm produces a very effective indexing scheme
for binary logo image databases, as observed in our exper-
iments on two different databases, and in particular for ob-
ject type of images. It may not however produce good re-
sults for other databases like human face, natural scenes,
etc. For gray scale images, proper adaptation of this tech-
nique, such as Euler Vector [4], may yield desired results,
but this area needs further investigation.
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