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Abstract 
 

The paper describes the colour correction approach of 
a system for the virtual aided recomposition of fragmented 
frescos, being developed and proved for the reconstruction 
of the S. Matthew’s fresco, painted at the end of the 13th 
century by Cimabue for the Upper Church of S. Francis in 
Assisi and broken in more than 140.000 fragments during 
the earthquake of 1997. One of its key features is the 
selection of fragments by a query-by-example approach 
applied to sample images (fragments and/or details 
extracted from the whole image of the fresco). 
Unfortunately the only available picture of the whole 
fresco has been acquired without any colour reference and 
is chromatically different across its extension and with 
respect to fragments: its comparison with them requires 
specific colour transformations to be applied to each of its 
regions. Two different methods to identify colour 
correspondences between fresco and fragments (manually 
and automatically from the already placed fragments) and 
two approaches to solve the resulting least-squares 
problem and evaluate the transformation matrices have 
been used and compared. The solution used in the system 
provides effective results at a very low computational cost. 
The restorers do not need to be aware of technical details 
related to the colour correction problem. The obtained 
improvement in terms of colour similarity is shown. 
 
1.  Introduction 
 

This work describes a component of a system for the 
virtual aided recomposition of fragmented frescos, whose 
interest arises from the need to recompose the S. Matthew 
fresco, painted at the end of the 13th century by Cimabue 
for the Upper Church of S. Francis in Assisi and broken 
into more than 140.000 fragments by the earthquake in 
September 1997. The large extension of the fresco (about 
35 squared meters), the huge number of fragments and the 
technique used by Cimabue (that makes the pictorial film 
very sensitive to the physical manipulation required by the 
traditional recomposition) have suggested the application 
of digital tools to this challenging problem. Moreover, 
fragments do not cover the whole fresco, partially belong 

to a neighbour fresco broken during the same event and 
exhibit contours that do not always match exactly. 

The system transposes the traditional recomposition 
process in a digital way. The operators have the critical 
role of applying new tools and flexible algorithms of 
image analysis to increase the efficacy of their work [1]. 

On the multi-monitor graphical station (Fig. 1) a part 
of the image of the whole fresco (shown in a scaled 
version on the central monitor) can be selected as 
background for the working area displayed at full 
resolution on the left-side monitor. The operator 
simultaneously rotates and translates each fragment across 
the region of interest using a special mouse to find its 
place. Virtual containers (right monitor) are the digital 
counterpart of the boxes used in the real lab to organize 
logically related fragments. 

 
Figure 1. The developed workstation for the virtual aided 
recomposition of fragmented frescos 

To improve the recomposition process, the system 
supports the retrieval of digital images of fragments from 
the database using an incremental and iterative query-by-
example modality. The operator picks up a set of images 
(fragments and/or details of the reference image) and the 
system selects from the database the fragments more 
similar to them. This process can be repeated with 
different sets (by adding, removing or changing the 
examples) until the operator’s needs are fulfilled. Colour 
and texture are the most important features for similarity 
evaluation [3]: in fact shapes, damaged during the 
fragmentation process, do not necessarily match perfectly. 

Unfortunately, the colours of the reference image, 



acquired several years before the earthquake under 
unknown illumination conditions, are very different from 
those of real fragments. Moreover, the fresco was painted 
on a vaulted ceiling, inducing different lighting conditions 
(and appearance of colours) in different areas of the fresco 
and, after the acquisition, several causes have produced 
different deteriorations across the extension of the fresco. 

Correcting colours of the reference image [9] allows 
the use of its details to index the database and simplify its 
comparison with the images of fragments to find their 
correct place. 

Two methods have been proved to identify the colour 
pairs required by the colour correction: the manual 
extraction of almost monochromatic patches from both the 
reference image and the corresponding fragments and the 
automatic processing of polychromatic fragments and of 
their corresponding patches from the reference image. 
Results obtained by these two approaches are compared. 
SVD and a constrained linear least-squares approach have 
been compared to derive from these pairs a matrix that 
corrects colours. Specific transformations are required for 
the particular chromatic characteristics of each part of the 
whole reference image. The process automatically applies 
to each fragment whose position in the whole fresco has 
been recognized to evaluate/refine the colour correction in 
its neighbourhood. 

2.  Data Set Selection 

This step identifies the colour correspondences 
required to evaluate the matrix that should bring the 
reference image to match the corresponding colours of 
fragments [2][7]. Picking up corresponding colours is hard 
because the image of the whole fresco has a resolution that 
is about five times lower than that of fragments, which 
generally do not match the orientation of the 
corresponding patch of the fresco. Two techniques, one 
manual and one automatic, have been compared to extract 
colour pairs. 

The manual procedure extracts, by hand, a suitable 
number of patches from both the reference image and the 
corresponding fragments: they must be mostly 
homogeneous in colour. These patches are therefore 
considered as monochromatic and are represented by the 
mean colour of their pixels. In this way, each patch 
provides one of the colours used to compute the 
transformation matrix. This technique takes a significant 
amount of time and requires the operator to have a greater 
consciousness of the colour correction process to reach a 
fruitful distribution of pairs in the colour space. 

The automatic extraction of colour pairs requires: 
• to extract from the reference image a patch having 

the same shape of the fragment; 
• to spatially register the patch and the fragment 

image; 

• to sample the registered images. 
The registration of patches extracted from the 

reference image, to correctly align them with the 
corresponding fragments, is mostly based on the moment 
features [5]. They rely on the evaluation of the scale factor 
and of the rotation that must be applied to the patch. A 
binary mask of each image is produced, where black is 
associated to background and white corresponds to 
meaningful pixels. The centre of mass and the orientation 
of each fragment can be evaluated from this mask. The 
centre of mass of the white region R, with N pixels in m 
rows and n columns, is: 
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Figure 2. The first image represents the mask of a fragment: 
the axis of minimal inertia passes through its centre of mass. 
The second, third and fourth images show the mask of the 
corresponding patch extracted from the reference image: 
before and after rotation, and after the application of the 
estimated scale factor 

The ratio between the length of the axes of minimal 
inertia, evaluated on the masks of both images, returns the 
scale factor. Moreover, the difference between the 
orientation angles returns the rotation angle (Fig. 2). After 
the registration, the two images can be sampled to obtain 
the colour pairs: the whole process can be applied to every 
fragment with a simple and fully automatic routine. 

3.  Colour Correction 
Colour correction must increase the chromatic 

similarity between the fragment F at hand and the 
corresponding patch P of the image of the whole fresco. 

minimal inertia axis 
centre of mass 



Let us suppose P and F to be correctly aligned, so that the 
pixel P(i,j) of the patch corresponds to the pixel F(i,j) of 
the fragment. Moreover, let us indicate with x and y the 
triplets of RGB colours relative to the same pixels in P 
and F respectively. The problem of colour correction can 
be regarded as the problem of finding a vector valued 
function f such that y=f(x). Note that we are not interested 
in analysing the causes of colour changes between the 
images of fresco and fragment, such as illumination, 
sensor characteristics, modifications of colours in time. On 
the contrary, we are interested in finding a mapping 
between colours on the basis of some examples of these 
changes, each taking the form of an input-output pair 
(x,y). 

This set of examples of size l, called training set, is 

defined as ( ){ }l
iiiS 1, == yx  where 3ℜ∈ix  are the colours 

of the reference image, 3ℜ∈iy are those of fragments and 
i = 1, 2, …, l is the number of considered pairs. This data 
set can be considered as obtained by a random sampling of 
an unknown vector valued function y=f(x) in presence of 
noise. In general, f is a non linear transformation that is 
estimated starting from a finite number of examples. In 
this paper the analysis will be limited to linear 
approximations of the unknown function f. The best linear 
approximations obtained by two methods are compared: 
the former solves a constrained minimization problem, the 
latter uses the Singular Value Decomposition. 

Both methods determine twelve elements: at least four 
colours are needed (each providing three equations) but a 
larger set of l linear equations, solved using the least-
squares method [4], provides a more reliable solution. 

3.1.  Regularized Linear Least Squares 

The aim is to determine the vector valued linear 
function y=Ax+b, where A is a q by d matrix (in our case 

q=d=3) and b is a vector in qℜ , which approximates at 
the best the function f in the least squares sense. This is 
equivalent to solve the following constrained minimization 
problem: 
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Euclidean norm. At this aim, let us consider the following 
Lagrangian function: 
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where λ  is the Lagrange multiplier relative to the 
constraint of the described problem. To determine the 
solution, the partial derivates of ( )bA,L  with respect to 
the unknowns b and A have been set to zero, so that: 
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and λ is the only free parameter that can be estimated on 
the basis of the leave-one-out error. 

3.2.  SVD Method 

This approach uses Singular Value Decomposition [6]. 
In this case, the aim is to compute the matrix A1 such as: 
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so that: y = Xa. The matrix X can be decomposed with the 
well known SVD; its factorization is TUWVX =  where 
U (3l by 3l) and V (12 by 12) are orthogonal matrices and 

( )rdiag σσσ ,...,, 21=W  with r = min (3l, 12) and 

rσσσ ≥≥≥ ...21 singular values of matrix X. Therefore, 
by solving the problem in the least squares sense, the 
following identity exists: 
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By changing variables VTa=z and UTy=d, the previous 
identity become: 
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4.  Leave -One -Out Error 

The leave-one-out error (loo-err) measures the error of  
generalization of a supervised learning machine, that is its 
capacity of correctly predicting the output for new input 
patterns. This rather general procedure leaves out one 
example ( )ii yx ,  at a time from the training set, trains the 

estimator if  on the remaining l-1 examples and computes 
the error between the prediction value ( )ixf  and the 

target iy  given by ( )
2

i
i

i xfy − . The quantity: 

( )∑
=

−=
l

i
i

i
il

L
1

21 xfy  

is a measure of the generalization error of the learning 
machine f trained using all the training examples (see the 
theorem of Luntz and Brailovsky in [8]). This procedure is 
time consuming (it requires to train l different predictors, 
one for each training sample) but it is useful for at least 
two different tasks: comparing different estimators trained 
on the same data set (see 5.2) and setting their free 
parameters (see 3.1). 

5.  Experimental Results 

The experiments aim to point out the performance of 
the two methods for data set selection and of the two 
methods for solving the least mean squares problem. 

5.1. Comparison between Manual and Automatic 
Approaches 

The manual and automatic approaches, to build the 
training sets needed to evaluate the transformation 
matrices, have been compared on two regions of the 
fresco: Judean and Mantle. In this case, the transformation 
matrices have been computed using the SVD method. The 
matrices are JM and JA (evaluated from data extracted 
from the Judean area with the manual and automatic 
methods respectively) and MM and MA (evaluated from 
data extracted from the Mantle area). 

The two methods have been compared by estimating 
the mean µ of the Euclidean distances and their standard 

deviations on the training set ( ){ }l
iiiS 1, == yx . The mean µ 

has been computed with the following expressions: 
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where A is one of the evaluated matrices. The results show 
that all distances are sensibly reduced after colour 
correction. Moreover, the linear predictors trained by 
Judean area performs well also on Mantle area showing a 
good generalization capacity to correctly predict unknown 
coloured areas (Table 1 and 2) and vice versa. 

Training set Judean NC JM JA MM MA 
Mean Error 50,05 14,41 16,94 18,60 15,91 
Stand Dev 25,47 9,19 13,19 14,51 8,26 

Training set Mantle       
Mean Error 46,81 16,93 17,97 11,85 17,69 
Stand Dev 17,84 10,82 11,04 7,92 12,33 

Table 1. The column NC reports the mean error µNC and the 
standard deviation of distances on the training set used to 
evaluate the JM (above) and MM (below) matrices. The others 
report the same quantities on the same training set but 
corrected using the four different matrices 

Training set Judean NC JM JA MM MA 
Mean Error 61,04 31,81 30,17 32,89 30,60 
Stand Dev 36,65 24,61 21,99 24,58 22,15 

Training set Mantle       
Mean Error 55,04 27,52 24,06 26,77 23,20 
Stand Dev 30,19 21,78 19,11 21,33 19,11 

Table2. The same measures described in table 1, but obtained 
on training se ts extracted automatically 

Afterwards, the Euclidean distance between 
corresponding colours have been integrated over five 
fragments and their registered patches, before and after 
colour correction. Two of these fragments (Frag 3 and 
Frag 5) belong to the Judean area and have been used to 
evaluate its transformations. Other two (Frag 1 and Frag 2) 
belong to the Judean area but have not been used to 
evaluate the matrices. The last one (Frag 4) belongs to the 
Mantle and has been used to evaluate its transformations. 
For each fragment the resulting measure is: 
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The (r, g, b)f, (r, g, b)nc and (r, g, b)pc triplets are the 
RGB components of pixels in fragments, not corrected and 
corrected corresponding patches respectively. Figure 3 
shows that the whole amount of these differences becomes 
about less than a half for every correction. 

Another measure (Table 3) quantifies the number of 
colours common to each of the five fragments and its 



corresponding patch, before and after colour correction. 
The registered patches exhibit much less colours than the 
corresponding fragments. This is due to the scale factor 
that exists between the real fragments and the reference 
image (about five): the registration step enlarge the patch 
extracted from the reference image but without adding 
new colours. Moreover transformation matrices normally 
cause a further reduction in the number of colours by 
compressing their distribution in the colour space. 
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 Frag NC JM JA MM MA 
Frag1 65933 17380 14938 7585 15573 7480 
Frag2 99635 20535 17321 9174 17893 9090 
Frag3 86530 14717 13142 8117 13449 8048 
Frag4 67859 13759 12063 6732 12496 6657 
Frag5 97209 28047 22618 10179 23722 9964 

Table 3. The table shows the number of colours common to 
each fragment and its corresponding registered patch, 
without and with correction 

The intersection and the union of the two histograms 
(of each fragment and of corresponding patch) have been 
evaluated: the number of colours belonging to both these 
images increases with colour correction (Table 4). A 
larger number of colours of corrected patches is 
representative of the corresponding fragments. The 
percentage of colours belonging to the intersection with 
respect to the total number of colours of the patch has 
been evaluated (Table5). Corrected patches include a 
greater number of colours that belong to the corresponding 
fragment. The correction increases colour similarity 
between the reference image and the corresponding 
fragments, making meaningful the retrieval process based 
on colour similarity with respect to details extracted from 
the corrected reference image. 

Also the percentage of colours of the reference image 
that are present in the histogram of fragments increases 
after correction (Table 5) that makes significantly closer 
the two colour spaces. 

 patch NC patch JM patch JA patch MM patch MA 
Frag1 2396 9906 5766 6793 5286 
Frag2 2186 11822 8803 9228 8684 
Frag3 810 8455 7589 7251 7172 
Frag4 430 4294 5726 7748 5786 
Frag5 4021 15713 9739 12741 9606 

Table 4. The table shows the number of colours shared by the 
histograms of each fragment and of the corresponding 
registered patch 

 NC % JM % JA % MM % MA % 
Frag1 13,8 66,3 76 43,6 70,1 
Frag2 10,6 68,2 95,9 51,6 95,5 
Frag3 5,5 64,3 93,5 53,9 89,1 
Frag4 3,1 35,6 85 62 86,9 
Frag5 14,3 69,5 95,7 53,7 96,4 

Table 5. The table shows the percentage of colours of 
patches extracted from the reference image that are also 
present in the corresponding fragments. The results refer to 
patches not corrected and corrected with the JM, JA, MM, and 
MA matrices respectively 

Figure 4 visually represent colour intersection. On the 
left, there is a patch extracted from the reference image, 
the second, third and fourth images show in dark grey 
(white) the pixels whose colour is present (not present) in 
the corresponding fragment before and after colour 
correction with the matrices JM and JA respectively. 

    
Figure 4. A patch extracted from the reference image (left). 
The other three images represent in dark grey the pixels 
whose colour is present in the corresponding fragment: the 
second refers to the not corrected patch; the third and the 
fourth to the patch corrected using the JM and JA matrices 
respectively 

The carried out experiments show that the performance 
of the automatic approach is comparable to manual. Since 
it is necessary to efficiently evaluate different matrices to 
correct different areas of the fresco, the automatic 
approach has been chosen  and implemented in the system. 

5.2. Comparison between Line ar Approximation 
Methods 

Table 6 shows the results obtained by comparing the 
SVD-based and the regularized linear least-squares 

Figure 3. The graphic shows the measure described in (1) 
applied to five fragments and to their corresponding patches 
not corrected and corrected using the four correction 
matrices.  Frag1 dashed line, Frag2 dotted, Frag3 solid, Frag4 
dash-dot-dot, Frag5 dash-dot 



methods. The experiment has been carried out by selecting 
different training sets consisting of 500, 5.000 and 50.000 
RGB triplets. The performance of the two resolution 
methods have been evaluated using the leave-one-out and 
the mean error on training sets. Experiments confirm that 
the regularized linear method provide the same effective 
results with a sensibly lower computational load, being 
effective for online colour correction. 

Training set Loo1-Err Loo2-Err Mean-Err1 Mean-Err2 
500 30.041 30.041 30.138 30.132 
5000 30.086 30.087 30.001 30.001 

50000 30.044 30.047 30.009 30.012 
Table 6. The leave-one-out error and the mean error obtained 
applying the SVD-based (1) and the regularized linear least -
squares (2) methods on the data extracted using the 
automatic approach to colour pairs selection 

  
Figure 5. An area of the fresco, with some of the fragments 
correctly located using the system, before and after colour 
correction: fragments are almost unnoticeable after the 
colour correction 

6.  Conclusion 

The critical problem of reducing the distance of 
colours between a reference image and the fragments 
inside a system for virtual aided recomposition of 
fragmented frescos has been described. It affects the 
query-by-example retrieval of fragments from the 
database, mainly colour-based, and their placement 
identified by restorers. 

The colour transformation has been modelled as a 
matrix provided by a Least-Squares approach applied on 
pairs of corresponding colours extracted using two 
different methods. The former uses the mean RGB values 
of almost monochromatic patches manually extracted from 
the reference image and the corresponding real fragments. 
The latter automatically extracts colours pairs from 
fragments and the corresponding correctly aligned patches 
from the fresco: it does not require special interventions 
by the operator because the system processes any new 
fragment placed on the fresco to evaluate a suitable 
transformation for its neighbourhood. In both cases the 
correction strongly reduces the distance between images. 

Two different methods to solve the Least-Squares 
problem and to determine a suitable linear approximation 
of the transformation in the colour space have been 
proved. The first solves a suitably composed over-
determined system using the SVD decomposition to 

identify the twelve elements of the desired matrix. The 
other one uses a constrained linear least-squares approach 
that strongly simplify the computational load, without 
decreasing the efficacy of the obtained results, being more 
suitable for online colour correction. 

The automatic extraction of colours pairs and the 
constrained linear least-squares compose an automatic tool 
for colour correction that increases the chromatic 
similarity between the reference image of the fresco and 
the fragments. This results has a twofold effect: it  
improves the visual perception of the operators that look 
for the right position of fragments and makes more 
meaningful the retrieval of fragments performed by the 
query-by-example approach applied to details extracted 
from the corrected reference image. 
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