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Abstract
We propose a new unsupervised learning method to ob-

tain a layered pictorial structure (LPS) representation of an
articulated object from video sequences. It will be seen that
this is related in turn to methods for learning sprite based
representations of an image. The method we describe in-
volves a new generative model for performing segmentation
on a set of images. Included in this model are the effects of
motion blur and occlusion. An initial estimate of the pa-
rameters of the model is obtained by dividing the scene into
rigidly moving components. The estimate of the matte of
each part is refined using a variation of the α-expansion
graph cut algorithm. This method has the advantage of
achieving a strong local minimum over labels. Results are
demonstrated on animals for which an articulated LPS rep-
resentation is naturally suited.

1. Introduction
In order to manage the variability in appearance of ob-

jects, there is a broad agreement that object categories
should be represented by a collection of spatially related
parts each with its own appearance. This sort of approach
dates back to the pictorial structures (PS) model of Fischler
and Elschlager, introduced three decades ago [4]. Pictorial
structures (and the related constellation of parts model) have
met with great success in object recognition [1, 3, 9, 11],
and so the question naturally arises, how might we learn this
representation automatically?

Weber et al. [11] and Fergus et al. [3] both consider the
problem of learning PS in unsegmented images e.g. given a
large number of images that contain horses, but not a seg-
mentation, the task is to learn a representation of a horse.
The algorithms they propose require very large amounts
of training data and are extremely slow which prompts the
question might not video input data be better used for the
task of learning representations? For example, Fig. 1 shows
some frames of one such video which can be used to learn
the representation of a zebra.

Ramanan et al. [9] present a method for learning pictorial

Figure 1. Four intermediate frames of a 25 frame video sequence

of a zebra running as the camera pans to follow it. Given the se-

quence, the generative model which best describes the zebra and
the background is learnt in an unsupervised manner.

structures from a video sequence by clustering segments ob-
tained by searching for parallel lines. However, their model
does not describe the object completely. Furthermore, the
relative depth of the various parts of the model are also not
determined. We propose a generative approach to estimat-
ing pictorial structures from video taking inspiration from
the related sprite based approaches.

Jojic and Frey [5] provide a generative Bayesian frame-
work in which each image is explained as a layered compo-
sition of sprites moving under pure translation. A sprite is a
2D appearance map and matte (mask) of an object, learned
using a variational algorithm. Each sprite is assigned to one
of L depth layers which determine the occlusion ordering
when composing the image. William and Titsias [12] use
a greedy sequential approach whereby the model for each
sprite is extracted in turn. However, using a greedy method
restricts them from obtaining models which are optimized
over all sprites. Both these methods do not consider the
spatial continuity in labelling, which means the methods
are unlikely to work unless the image sequences are very
long and highly textured. Moreover, they do they take self-
occlusion or changes in appearance due to lighting into ac-
count.

We present a new model which addresses the deficien-
cies in [5, 12], the layered pictorial structure, LPS, which
generalizes and improves both the layered sprite models and
PS. Unlike previous models, each part is also assigned a
layer number which represents its relative depth. In con-



trast to the greedy method described in [12], all parts are
learnt simultaneously.

We present a method to estimate the parameters of the
model in an unsupervised manner. Using rough estimates
of motion obtained by a motion segmentation algorithm [7],
the shape parameters of the model, represented as a binary
matte, are learnt by minimizing an objective function us-
ing the α-expansion algorithm to perform multi-way graph
cuts. The parts obtained by this method describe the object
completely. Unlike the greedy method proposed in [12],
α-expansion method optimizes over all parts and guaran-
tees that a strong local minimum (i.e. bounded by a con-
stant factor of the global minimum) is found. Since our
method works by refining parts instead of dealing with in-
dividual pixels in the scene, we can explicitly model the
change in appearance of parts arising from lighting condi-
tions and motion blur.

In the next section, we describe the LPS model in detail.
In section 3, we present a four stage algorithm to estimate
the shape, appearance, layer number and transformation pa-
rameters for all parts of the LPS. The learnt LPS model can
be used for several applications such as recognition, pose
estimation and point-and-click object removal. In section 4,
we demonstrate the application of the model for segmenta-
tion.
2. Layered pictorial structures

This section describes the LPS model and its terminol-
ogy. PS are compositions of parts, which are 2D patterns
with a probabilistic model for their shape and appearance.
In the LPS model, in addition to shape and appearance, each
part is also assigned a layer number.

LPS is a generative model, i.e. any instance of the object
and background can be generated from it by assigning ap-
propriate values to its parameters as shown in Fig. 2. It also
provides the likelihood of that instance.

A model reference frame describes the shape and appear-
ance of the parts (top image in Fig. 2). The shape of a part
pi is represented by a binary matte Θi

M , such that

Θi
M (x) = 1, if x ∈ pi,

= 0, otherwise. (1)

The appearance Θi
A(x) is the RGB value of point x in the

model reference frame. Instances of the object (e.g. frames
of a video) along with their likelihoods are generated by ap-
plying a transformation to each part. The transformations
Θ

j
T i generate frame j by mapping each point x ∈ pi of

the model reference frame onto point x′ = Θ
j
T i(x) in the

frame as shown in Fig. 2. Each transformation is defined by
a translation {x, y}, rotation φ and scales sx and sy in x and
y direction respectively.

Parts are composited in descending order of their layer
numbers to handle self-occlusion. The layer number li de-
termines the relative depth of a part with respect to other

D Data (RGB values of all pixels in every frame of a video).
nF Number of frames.
nP Number of parts pi including the background.
li Layer number of part pi.

Θ
i
M Matte for part pi.

c(x) RGB value [r(x) g(x) b(x)] for point x.
Θ

i
A Appearance parameter for pi i.e. c(x) ∀ x ∈pi.

Θ
i
P Parameters {li,Θi

M ,Θi
A} of part pi.

Θ
j
T i Transformation {x, y, sx, sy, φ} of part pi in frame j.

Θ
j

Di Lighting and motion parameters {aj
i ,b

j
i ,m

j
i}

of part pi in frame j.
Θ Model parameters {nP ,ΘP ;ΘT ,ΘD}.

Table 1. Parameters of the LPS

(a) (b) (c)

Figure 3. An articulated object is divided into multiple layers in

the LPS model. Several parts can belong to the same layer. Parts of
the model for a zebra belonging to layer 2 and layer 1 are shown in

(a) and (b) respectively. Mattes of various parts are shown in (c).
The lines indicate the relative position and orientation of parts.

parts. Several parts can have the same layer number (see
Fig. 3). The part pi can partially or completely occlude part
pj if and only if li > lj .

The effects of lighting conditions and motion blur on ap-
pearance are explicitly modelled using parameter Θ

j
Di =

{aj
i ,b

j
i ,m

j
i}. The change in appearance of the part pi in

frame j due to lighting conditions is accounted for by an
affine transform of the RGB values:

c(x′) = diag(aj
i ) · c(x) + b

j
i . (2)

The parameter m
j
i is the time varying component of the

motion which depends on the location of part pi in the pre-
vious frame. Unlike previous approaches, this allows us to
take into account the change in appearance due to motion
blur as

c(x′) =

∫ T

0

c(x′ − m
j
i (t))dt, (3)

where T is the total exposure time when capturing the
frame. The notation used to develop the model is summa-
rized in table 1.

Model energy. Given data D, which consists of the RGB
values of all pixels in every frame of a video, let Ij

i (x) be
the observed RGB values of point x′ = Θ

j
T i(x) in frame

j. The likelihood of the model has two components: (i)
appearance and (ii) boundary. The appearance component
is a measure of the consistency of the observed RGB values
Ij

i (x) with the generated RGB values c(x′) over the entire
video sequence. The boundary component gives preference
to an edge being present between two neighbouring points



Figure 2. The top row shows the model reference frame of the LPS model for a zebra. Any frame j can be generated using the LPS model by

assigning appropriate values to the parameters. When generating the frame k, the motion parameters mk
i are obtained using the transformation of

the parts pi in frame k − 1. The background part for the generated frames is not shown.

x and y which belong to different parts. This is particularly
true if one point belongs to the background and the other
belongs to some part of the object. Thus, we can define the
energy of the model as:

Ψ(D) =

nP
∑

i=1

∑

x∈pi

(

A(x, pi) + λ
∑

y

B(x,y)

)

, (4)

where x and y are two neighbouring points which belong to
different parts.

Appearance. For a given frame k, the appearance com-
ponent for a point x ∈ pi, i.e.

Ak(x, pi) = − log(Pr(Ik
i (x)|x ∈ pi)) (5)

is the inverse log-likelihood of the observed data being gen-
erated by the parameters of pi. It is assumed each part has
a distinctive appearance, such that the intensities conform
to some given distribution, which models the appearance of
the texture of that part. For this paper we assume that the
set of RGB values of the pixels for a given part pi over all
frames follows a Gaussian Mixture Model (GMM) Mi.

If a point x belongs to part pi, the error in generating
that point using the parameters for pi is small. Thus the
likelihood of x is

Pr(Ik
i (x)|x ∈ pi) ∝ Mi(I

k
i (x)) exp(−(c(x′)−Ik

i (x))2),
(6)

where c(x′) is the RGB value generated for point x ∈ pi in
frame k using the model reference frame as shown in equa-
tion (3). In homogeneous regions, motion vectors yield lit-
tle discrimination between foreground and background. In
such case, the texture model given by the GMMs provides
better discrimination. For example, motion may not be de-
termined locally for a uniformly brown horse. However, its
appearance (‘brown’) distinguishes it from the background
(‘green grass’). Therefore, it is necessary to estimate the
likelihood of the RGB values Ik

i (x) given by the GMM of
part pi.

For a video, the appearance component for x ∈ pi is
given by summing over all frames:

A(x, pi) =

nF
∑

k=1

Ak(x, pi). (7)

The appearance component for the part is obtained by sum-
ming over x ∈ pi as shown in equation (4).

Boundary. The boundary component is given by

B(x,y) = exp

(

−g2

i (x,y)

2σ2

)

·
1

dist(x,y)
, (8)

where x ∈ pi and y 6∈ pi are two neighbouring points which
belong to different parts. The neighbourhood of a point x is
defined as its 8-neighbourhood. The total cost is obtained
by summing along the boundary of all parts as shown in
equation (4). For a given frame k, gi(x,y) measures the
difference in the RGB values of points Ik

i (x) and Ik
i (y) and

dist(x,y) gives more weightage to the 4-neighbourhood
of x. For a video, we define gi(x,y) as the average differ-
ence in the RGB values Ik

i (x) and Ik
i (y) over all frames k,

i.e.
gi(x,y) =

1

nF

nF
∑

k=1

|Ik
i (x) − Ik

i (y)|. (9)

The term λ in equation (4) specifies the relative weight of
the boundary part to the appearance part in the likelihood
of the model. Using a high value for λ results in discon-
tinuous parts for textured animals such as zebras as it en-
courages edges between points belonging to different parts.
A lower value for λ would result in background being in-
cluded in the parts belonging to the object. The value of σ
in equation (8) determines how the energy Ψ(D) is penal-
ized since the penalty is high when gi(x,y) < σ and small
when gi(x,y) > σ.

In the next section, we describe a four stage approach to
calculate the parameters Θ of the LPS model of an object,
given data D, by minimizing the energy Ψ(D). The method
described is applicable to any articulated object category.
We demonstrate the method for animals.



3. Learning layered pictorial structures
Given the video of an animal in motion, our objective is

to estimate the parameters Θ of the model for the animal
and the background. We obtain these parameters in four
stages. In the first stage, an initial estimate of the parame-
ters is found. In the remaining stages, we alternate between
holding some parameters constant and optimizing the rest
as illustrated in table 2. Following this method guarantees
finding a strong local minimum.

1. An initial estimate of the parameters Θ is obtained by divid-
ing the scene into rigidly moving components (§ 3.1).

2. The parameters ΘT ,ΘA and ΘD are kept constant and ΘM

is optimized using the α-expansion algorithm. The layer
numbers li are also obtained (§ 3.2).

3. Using the refined values of ΘM , the new appearance param-
eters ΘA are obtained (§ 3.3).

4. Finally, the parameters ΘT and ΘD are re-estimated , keep-
ing ΘM and ΘA unchanged (§ 3.4).

Table 2: Estimating the parameters of the LPS model

3.1. Initial estimation of parameters

We obtain an initial estimate of parameters Θ =
{nP ,ΘP ;ΘT ,ΘD} (excluding the layer numbers li) using
the method described in [7]. Briefly, this approach consists
of choosing one frame (e.g. the first) as a reference frame.
The reference frame is divided into uniform rectangular
fragments which are tracked throughout the video sequence.
Tracking for a frame is performed by defining a Markov
random field (MRF) such that the sites of the MRF corre-
spond to the fragments in the reference frame. The neigh-
bourhood of a fragment is defined as its 4-neighbourhood.
Each putative transformation of a fragment is represented
by a label on the corresponding node of the MRF. Its like-
lihood is proportional to the cross-correlation of the frag-
ment, after undergoing the transformation, with the frame.
Pairwise potentials are defined such that neighbouring frag-
ments which do not move rigidly are penalized. MAP es-
timation over all fragments is obtained using loopy belief
propagation [8]. Fig. 4 shows the reference frame and track-
ing results for the frames shown in Fig. 1.

The initial estimate of the parts of the model is obtained
by clustering rigidly moving points. Fig. 5 (top) shows the
initial mattes ΘM of the parts obtained. The RGB values
of the corresponding points in the reference frame provide
the appearance parameter ΘA and the motion parameters
estimated above provide the initial estimate of ΘT and m

j
i .

The lighting parameters a
j
i and b

j
i are then computed in a

least squares manner.
The initial estimate is then refined by optimizing one pa-

rameter at a time while keeping others unchanged. We start
by optimizing the shape parameters ΘM as described in the
next section.

Figure 4. Reference frame (left) and reconstructed frames cor-

responding to those in Fig. 1. Each fragment from the reference
frame is mapped using the most likely transformation obtained. The

pixels where no points from the reference frame are mapped are

coloured in blue. Note that despite the errors due to discretization
of the reference frame into fragments, the method provides roughly

correct motion parameters.

3.2. Refining shape
In this section, we describe a method to refine the esti-

mate of the shape parameters ΘM and determine the layer
numbers li. Given an initial coarse estimate of the parts, we
iteratively improve their shape using consistency of motion
and texture over the entire video sequence. The refinement
is carried out such that it minimizes the energy Ψ(D) of the
model.

The distribution of the RGB values obtained by project-
ing the part into all frames is given by the GMM Mi. This
is required to compute the appearance component in equa-
tion (4). The parameters of Mi are obtained using the EM
algorithm. Given the mattes Θi

M , with the corresponding
points in the reference frame defining the appearance pa-
rameters Θi

A, the energy of the model can be calculated
using equation (4). Obviously, the optimum mattes Θi∗

M are
those which minimize Ψ(D).

We take advantage of the efficient α-expansion algo-
rithm [6] for solving MRFs which is based on graph cuts.
Specifically, it is possible to efficiently minimize an energy
function over point labellings h of the form

Ψ̂ =
∑

x∈X

Dx(hx) +
∑

x,y∈N

Vx,y(hx, hy), (10)

under fairly broad constraints on D and V . Here Dx(hx)
is the cost for assigning the label hx to point x and
Vx,y(hx, hy) is the cost for assigning labels hx and hy to
the neighbouring points x and y respectively.

In our case, each label hi assigns a point x in the model
reference frame to part pi. Comparing the model energy
Ψ(D) in equation (4) with the energy function Ψ̂ we get

Dx(hi) = A(x, pi), (11)

and
Vx,y(hi, hj) = λB(x,y), (12)

where hj 6= hi. For the sake of completeness, we define
graph cuts and the α-expansion algorithm below.



A cut on a graph partitions its vertices into two disjoint
sets. The cost of a cut is defined as the sum of the weights of
the edges between vertices belonging to different sets. The
problem of minimizing Ψ̂ for two labels can be formulated
as the problem of finding the cut with the minimum cost,
which in turn can be efficiently solved by computing the
maximum flow of the graph [2].

Unfortunately, minimizing Ψ̂ for more than two labels is
an NP-hard problem [6]. However, an iterative algorithm
called α-expansion can be used to find a strong local mini-
mum which lies within a constant factor of the global min-
imum. This constant factor is at least 2, and depends on
V [2]. We define the limit Li of a part pi as the set of points
x which lie within a distance of 25 from the bounding box
of the current shape of pi. Each iteration of the α-expansion
algorithm refines a part pi by solving the problem of assign-
ing two labels hi and ¬hi to points x ∈ Li, where ¬hi is
the union of all labels excluding hi. In other words, at each
iteration we do not allow a part to expand beyond its limit
Li. For example, during an iteration where the head part
is being refined, each point x can either retain its label, i.e.
remain a point on the torso or leg parts, or get assigned the
label corresponding to the head part.

Given part pi, let pj be a part such that the limit Li of pi

overlaps with pj in at least one frame k of the video. The
number of such parts pj is quite small for objects such as
animals which are restricted in motion. For example, the
head part of the zebra shown in Fig. 1 only overlaps with
the torso part. During the iteration refining pi, we consider
three possibilities for pi and pj : li = lj , li > lj or li < lj . If
li < lj , we assign Pr(Ik

i (x)|x ∈ pi) = const for frames k
where x is occluded by a point in pj . We choose the option
which results in the minimum value of Ψ. After iterating
through each part once, the parameters of the GMM Mi are
updated. We stop iterating when further reduction of Ψ is
not possible. This provides us with a refined estimate of
ΘM along with the layer number li of the parts.

Fig. 5 shows the result of refining the shape parameters
of the parts by the above method using the initial estimates.
Next, the appearance parameters corresponding to the re-
fined shape parameters are obtained.
3.3. Refining appearance

Once the mattes Θi
M of the parts are obtained, the corre-

sponding pixels in the reference frame provide the final es-
timate of the appearance parameter Θi

A. The refined shape
and appearance parameters help in obtaining a better esti-
mate for the transformations as described in the next sec-
tion.
3.4. Refining transformations

Finally, the transformation parameters ΘT and the light-
ing and motion blur parameters ΘD are refined by search-
ing over transformations {x, y, sx, sy, φ} around the initial
estimate, for all parts at each frame j. For each putative

Figure 5. The refined mattes of the LPS parts for a zebra obtained
using multi-way graph cuts. The figure also shows two of the gen-

erated frames. The shape of the head is re-estimated after one iter-

ation. The next two iterations refine the torso parts which expand
out while the half-limbs remain unchanged. All parts (including

background) are refined once after 10 iterations. At this point, the

parameters of the GMM, Mi, are re-estimated. The final estimates
of the head and the two body parts are obtained after 11, 12 and

13 iterations respectively. The final matte of the parts after 20 iter-
ations followed by merging smaller regions with their neighbours

is shown in the last row. Note that even with a bad initial estimate,

the α-expansion method results in a good local minimum.
transformation, parameters {aj

i ,b
j
i} are calculated in a least

squares manner and the motion parameters mi
j are found

using the current transformation and Θ
j−1

Ti . The parameters
which result in the smallest SSD are chosen. In the next sec-
tion, we demonstrate the application of the learnt model for
segmentation.

4. Results, Segmentation
We present an application of the learnt LPS model for

segmentation. The parts along with their layer number and
their transformations for each frame, are obtained by mini-
mizing the energy Ψ(D). In our experiments, λ and σ are
assigned the values 1 and 5 respectively.

In practice, the α-expansion algorithm described in § 3.2
converged after 2 expansion moves for each part, resulting
in a total of 20 expansion moves, for all the video sequences
we used. When refining parameter ΘT as described in sec-
tion 3.4, we searched for putative transformations by con-
sidering translations of upto 5 pixels, scales between 0.8
and 1.2 and rotations between −0.3 and 0.3 radians around
the initial estimate.



To obtain segmentation of the video, the parameters Θ

are used to generate the frames as described in section 2.
Our assumption that parts are always mapped onto the
frame being generated using only simple geometric trans-
formations {x, y, sx, sy, φ} is not always true. This would
result in gaps between parts in the generated frame. In
order to deal with this, we allow for slight parallax dis-
tortion [10] for each part by relabelling points around the
boundary of parts. This relabelling is performed by using
the α-expansion algorithm. The cost Dx(hi) of assigning
point x around the boundary of pi to pi is the inverse log
likelihood of its observed RGB values in that frame given
by the GMM Mi. The cost Vx,y(hi, hj) of assigning two
different labels hi and hj to neighbouring points x and y is
directly proportional to B(x,y) for that frame.

Fig. 6 and 7 show the results of segmentation on zebra
and rhinoceros videos which have 25 frames and 100 frames
respectively. The third row in each figure shows the differ-
ence between the actual frame and the one generated using
the LPS model. Most of the error in the zebra video is due to
the misalignment of texture in the head and body parts. The
performance of our method was measured using two manu-
ally segmented intermediate frames corresponding to those
shown in Fig. 5. Out of 27268 ground truth foreground pix-
els in these frames, 26224 (96.17%) were present in the gen-
erated frames. The errors in the rhinoceros video are mainly
due to the legs being partially occluded by grass. Results in-
dicate that excellent segmentation is obtained using the LPS
model.

Figure 6. Segmentation results I (Zebra sequence). The first row

shows five frames of the original video sequence. The second row

shows the result of segmenting the zebra from the corresponding
frames. Each of these segmented frames is generated by the pa-

rameters Θ of the learnt LPS as described in § 2. The difference in
RGB values of the corresponding pixels is shown in the third row.

Note that most of the errors are due to misalignment of texture in

the head and body parts due to muscular expansion and contrac-
tion. Small parts moving non-rigidly, such as ears and mane, also

result in some error.

5. Summary and Conclusions
We have proposed a new model, LPS, which overcomes

many deficiencies in previous models such as handling self-
occlusion and changes in appearance due to lighting and
motion blur. We also describe a method to learn the param-
eters of the LPS model for an object from a video in an un-
supervised manner using multi-way graph cuts. The learnt

Figure 7. Segmentation results II (Rhino sequence). Most of the

errors are due to a part being partially occluded by the background.

model gives excellent results for segmentation of an object.
The model can also be used for other applications such as
pose estimation and object recognition.

The method needs to be extended to include various vi-
sual aspects of an object, i.e. in addition to side views, it
must also handle frontal, back and 3/4 views. The model
should also be improved to include parts of the scene not
present in the reference frame.

Acknowledgments. This work was supported in part by
the IST Programme of the European Community, under the
PASCAL Network of Excellence, IST-2002-506778. This
publication only reflects the authors’ views.

References
[1] S. Agarwal and D. Roth. Learning a sparse representation

for object detection. In ECCV02, page IV: 113 ff., 2002.
[2] Y. Boykov, O. Veksler, and R. Zabih. Fast approxi-

mate energy minimization via graph cuts. IEEE PAMI,
23(11):1222–1239, 2001.

[3] R. Fergus, P. Perona, and A. Zisserman. Object class recog-
nition by unsupervised scale-invariant learning. In CVPR03,
pages II: 264–271, 2003.

[4] M. Fischler and R. Elschlager. The representation and
matching of pictorial structures. TC, 22:67–92, January
1973.

[5] N. Jojic and B. Frey. Learning flexible sprites in video lay-
ers. In ICCV01, volume 1, pages 199–206, 2001.

[6] V. Kolmogorov and R. Zabih. Multi-camera scene recon-
struction via graph cuts. In ECCV02, page III: 82 ff., 2002.

[7] M. P. Kumar, P. H. S. Torr, and A. Zisserman. Learning lay-
ered pictorial structures from video. Technical report, Ox-
ford Brookes University, 2004.

[8] J. Pearl. Probabilistic Reasoning in Intelligent Systems: Net-
works of Plausible Inference. Morgan Kauffman, 1998.

[9] D. Ramanan and D. Forsyth. Using temporal coherence to
build models of animals. In ICCV03, pages 338–345, 2003.

[10] P. H. S. Torr, R. Szeliski, and P. Anandan. An inte-
grated bayesian approach to layer extraction from image se-
quences. IEEE PAMI, 23(3):297–304, 2001.

[11] M. Weber, M. Welling, and P. Perona. Towards automatic
discovery of object categories. In CVPR00, pages II: 101–
108, 2000.

[12] C. Williams and M. Titsias. Greedy learning of multiple ob-
jects in images using robust statistics and factorial learning.
Neural Computation, 16(5):1039–1062, 2004.


