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Abstract. The present paper proposes a new method for high
resolution image generation from a single image. Generation of high
resolution (HR) images from lower resolution image(s) is achieved by
either reconstruction-based methods or by learning-based methods. Re-
construction based methods use multiple images of the same scene to
gather the extra information needed for the HR. The learning-based
methods rely on the learning of characteristics of a specific image set
to inject the extra information for HR generation. The proposed method
is a variation of this strategy. It uses a generative model for sharp edges
in images as well as descriptive models for edge representation. This prior
information is injected using the Symmetric Residue Pyramid scheme.
The advantages of this scheme are that it generates sharp edges with no
ringing artefacts in the HR and that the models are universal enough to
allow usage on wide variety of images without requirement of training
and/or adaptation. Results have been generated and compared to actual
high resolution images.

Index terms: Super-Resolution, edge modelling, Laplacian pyramids.

1 Introduction

Generation of high resolution (HR) images from low resolution (LR) images have
been attempted through reconstruction based approaches and learning based ap-
proaches. Reconstruction based approaches require multiple images. They make
use of subpixel shifts between images to pool in the extra information needed to
create the HR image. Methods employed include sub-pixel registration, nonuni-
form interpolation [1][2] and frequency domain approaches [3][4]. An exhaustive
list of methods can be found in [5], [6]. Learning based approaches build a relation
between LR and HR images, based on the imaging process and/or description
of corresponding edges between LR and HR. Multiresolution based mehods are
a natural choice for this problem. The multiresolution representations seperate
the information in images by frequency. The generation of HR is essentially the
problem of generating the missing (hypothetical) level(-1) subband. Solutions
have been proposed based on zoom [7][8], wavelet [9] and contourlet [10] coef-
ficients. A detailed discussion can be obtained from [11]. The problem may be
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decomposed into three parts: (i) formulating a model for predicting edges in HR
based on edges in LR (ii) using the model for calculating the high frequency
components to be added and (iii) injecting those (postulated) components in a
manner consistent with the known lower frequency components as given in the
LR image. This paper presents a new method for each of these, based on Lapla-
cian pyramids and their variations. Laplacian pyramids [12] are chosen for the
multiresolution representation as they provide the simplest and most regular rep-
resentation of edges in the subbands. There is a single, non-directional subband
at each level, unlike the three subbands for 2D wavelets. The 4/3 redundancy
also leads to more regular structures in the subband.

Our model for predicting edges in the HR image is based on the observation
that edges arising due to occlusion remain sharp at every resolution. Edges aris-
ing due to shading and surface patterns should become blurred when resolution
is increased. Conversely, the majority of the sharp edges in an image may be
assumed to be occlusion edges. For generating an HR image, these sharp edges
must be identified in the LR and their sharpness must be restored in the HR
image. Simple interpolation will blur all edges while increasing feature sizes.
Our HR generation is limited to the objective of preserving sharpness of edges
which are sharp in LR. (A single image method cannot, in any case, introduce
new edges and features into the HR image.) The Laplacian pyramid, like all
other multiresolution representations, creates a hierarchy of subbands encoding
edges of decreasing sharpness. Thus the first subband, designated L0, captures
all the sharp edges in the image. This paper presents methods for interpolating
L−1 from L0, restoring the sharpness of the edge representations and ensuring
consistency between this modified L−1 and the given LR image.

The current work makes use of two recent results related to Laplacian pyra-
mids. It has been shown that Laplacian subbands can be represented using edge
model elements [13]. (Note that these are descriptive models describing the pat-
terns corresponding to edges of various sharpness and geometry, as opposed to
the generative model for edges discussed earlier.) A model-based description is
convenient for altering the sharpness of selected edges without affecting the res-
olution or frequency content of the image as a whole. Another result of relevance
to the present work is the extension of Burt’s Laplacian pyramids called Symmet-
ric Residue pyramids [14] (SRP). It addresses the issue of consistency between
pyramid subbands and the nature of independent information at each level. The
methods given there are used in the present work to initially postulate an L−1

from given L0 and then, after selective edge sharpening, to ensure consistency
between modified L−1 and L0.

The paper is organised as follows. We provide relevant details of edge mod-
elling of Laplacian subbands in Section 2. Subsequently we briefly review SRP in
Section 3. Section 4 discusses generation of L−1 using edge-model representation,
including effect of subsampling on the modelling process. Section 4 ends with
the algorithm for generation of L−1. Section 5 provides results and performance
evaluation and the paper concludes in Section 6.
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2 Edge-Modelling

For purposes of interpolation for HR, we need a mechanism to model the domi-
nant, sharp edges in the L0 subband. As such, it is important to have a repre-
sentation that is edge based rather than pixel or frequency based since it will
allow edge specific modifications. As the SRP based interpolation (see Sec 3)
can fill in the mid- and lower-frequency components later, the MSE of the mod-
elling process is not that critical. The Laplacian subband edge-modelling process
described in [13] provides such a model. The modelling elements shown in the
Figure 1 are the ones which are called Primitive Set(PS)-28.

(a) The 14 elements based on sharp edges (b)The 14 elements based on smoother edges

Fig. 1. The PS28 primitive set elements. The 7 × 7 elements, scaled for display.

The PS-28 elements are defined as 7 × 7 images. The PS is chosen to be
a set of sharp and blur edge elements as represented in Laplacian subbands.
Due to its band-pass nature, only edges of certain thickness can be dominant
in any subband. As mentioned in [13], the problem simplifies if one opts for
the task of selecting 7 × 7 blocks that can be represented using individual PS
elements (the modelling approach) instead of representing arbitrary 7×7 blocks
as a superposition of a given set (projection onto basis approach). Denote the PS
elements as pi and the block to be modelled as x. For computing a representation
using a basis set, the procedure would be to compute a set of coefficients, αi, to
best represent any given x. For edge modelling in [13], the procedure adopted
is to take each element pi and see which part of the image it can best model.
Various model fit criteria are used to determine in which order the Laplacian gets
modelled by the various model elements. The objective is to find an x, model
element pi and associated scalar α that minimises

J =
‖(x− α.pi)‖

‖(x)‖ . (1)

The edge-model element for a particular location was picked on the basis of
energy and modelling error. For each 7 × 7 block extracted from the Laplacian
image, the following were computed. The energy of the extract determines the
amount of signal present. Laplacians, like all subbands, are zero-mean and sparse.
The energy is concentrated in only a few areas. Only blocks having energy above
a threshold were considered for modelling. The threshold was initially set high
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and reduced with each iteration till it reached a lower cut off. This cut off de-
termined the termination of the iterative process, as errors below this threshold
were not modelled further. Only blocks whose energy crosses the current thresh-
old, were considered for modelling by elements of the primitive set. A sample
result of the accuracy of modelling process is shown in Figure 2. It is seen that
the modelling of Laplacian subbands can be done to a reasonable accuracy.

a b c d

Fig. 2. Demonstration of modelling accuracy: (a) Clown image, (b) Laplacian of Clown
image, (c) Modelled Laplacian (d) Modelling error

3 Symmetric Residue Pyramids

Symmetric Residue Pyramids [14] were proposed as an extension to Burt Lapla-
cian pyramids. Initial aim of the SRP was to achieve better signal compaction. It
makes use of the fact that the Laplacian subband at the level i, Li and gaussian
subband at next level i+1, Gi+1 are related due to the redundancy in the Lapla-
cian pyramids. The set of all possible Li can be divided into equal sized cosets
corresponding to each possible Gi+1. The process of generating an acceptable Li

given a Gi starts with an initial guess, which may even be a blank (zero) image.
An iterative process is deployed to get one of the acceptable Li: (exp is the
expand/interpolation operation, ss is subsampling and lpf is low-pass filtering)

1. Li[0] = Initial guess (may even be 0 image)
2. Gi[k] = exp(Gi+1) + Li[k] (usual pyramid reconstruction)
3. Li[k + 1] = Gi[k] − exp(ss(lpf(Gi[k])))

The above process can be used to guess Li to within an element in the correct
coset. The reconstruction process only needs the difference between this element
and the actual Li, denoted as SLi. The SRP is defined by SLi, i = 0...n, Gn+1.
Decomposition of Lena image using Burt Laplacian pyramid and SRP is shown
in Figure 3(a) and 3(b) respectively.

The above processes are of relevance to the current work for two reasons. The
iterative scheme, initialzed with a blank L−1, is a good way of interpolating
an L−1 from L0. It is certainly better than simple interpolation (essentially
L−1 = exp(L0)). More importantly, it highlights the need for, and the method of
utilization, of additional information. The SRP subbands show that the missing
information is with regards to high frequency informaion about the sharp edges.
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(a) Burt Laplacian Pyramid (b) Symmetric Residue Pyramid

Fig. 3. Decompositions of Lena image

This is just the kind of information that could be provided by the edge model
based interpolation or sharpenning of a Laplacian. Moreover, any information
fed as a prior (L−1[0]), can be considered as an addition of two components:
one that is part of the L−1 coset corresponding to G0 and one that is not. The
former constitutes the part of the prior that is consistent with the LR and latter
the inconsistent part. Once the iteration process is run, the latter is eliminated.
This is of importance because it means that our generation of the prior need not
be very accurate. A certain amount of error correction can be performed.

Having reviewed the necessary building blocks, the generation of L−1 is ad-
dressed next.

4 Generation of L−1 Using Edge-Model Representation

Given the edge-model based representation of the Laplacian subbands, it is in-
tuitive to use direct method of placing them at calculated position in 2X (2
times) to get L−1. We have done experiments which reveal that the modelling
of subsampled images does suffer from errors while modelling any of the even or
odd location. The even or odd location depends on the choice of pixels in sub-
sampling process. The error becomes prominent when a 2X Laplacian image i.e.
L−1 is generated using the description. Though the error could be suppressed by
a choice of higher energy threshold for modelling, it would affect the modelling
accuracy at the L0 level itself. This is shown in Figure 4. The image consists
of four 64 × 64 blocks. The left top pixel of the boxes is placed at even-even
(block at left top), odd-even (block at right top), even-odd (box at bottom left),
and odd-odd (block at bottom right) locations. Figure 4(d) shows the modelling
error at LR only. It is clearly visible that the modelling error is more in case of
the blocks placed at the location where one of the starting positions happens to
be odd. The bottom right block suffers the most as it is placed at the odd-odd
location.

The image formation process can be assumed to be modelled by the expres-
sion [15][16] y = DBMx + n. Here M is a warp matrix, B represent a blur
matrix and D is a subsampling matrix, and n is noise vector. y and x are the
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a b c d

e f g

Fig. 4. Subsampling and grid positions. Top: (a) Low resolution (LR) image (b) L0 of
LR (c) Modelled L0 of LR. (d) modelling error. Modelling errors after subsampling are
more for odd grid positions. Bottom: (e) Original (HR) image (f) True L0 of HR image
(g) Estimate of HR’s L0, based on modelling description of L0 of LR. The interpolation
error also depends on position.

LR and HR respectively. D breaks the equivalence between even and odd grid
points in the HR image. In the above example the modelling elements generated
happened to be the ones which correspond to edges at even positions, i.e., the
positive peak corresponds to even row or column location in the image. It is not
desirable to circumvent this problem by incorporating modelling elements for
both even and odd location edges. It doubles the number of elements from PS-
28 to PS-56 and increases the complexity of the modelling process. In practise,
this approach does not lead to reduction in modelling error. For the specific case
of interpolation and edge sharpening, an indirect solution is devised based on
post-interpolation modelling.

4.1 Dealing with Modelling Error Due to Subsampling

Our final objective is to define an L−1 based on some model reconstruction. As
such a model for L0 itself is not a necessity. One solution is to interpolate L0

to L̂−1 before performing the edge modelling. The quality of the interpolation
method is clearly important. In our case we have used the symmetric residue
process to get the L̂i−1, as explained earlier. After interpolation, we generate
the edge-model description of the interpolated image’s Laplacian subband. The
variation in edge patterns due to even-odd positions is attenuated because the
equivalence between various grid points gets restored when they are upsampled.
As edge representation gets blurred during interpolation, the model is dominated
by the elements corresponding to the thicker edges. These modelling elements
are now replaced by sharp edge modelling elements. By doing so we undo the
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(a) (b) (c)

Fig. 5. Generation of sharp edges by post-interpolation model switch. (a) L−1 by
interpolating L0 has thick edges. (b) L−1 obtained from edge-model description of L0

has errors (cf Fig 4 g). (c) L−1 obtained by modelling the left image and switching
model elements before reconstruction has sharp edges with no ringing artefacts.

blurring caused by interpolation and restore the sharpness of edges at 2X also.
The effect is shown in the Figure 5.

4.2 L−1 Generation Algorithm

The process of generating HR images from LR images, as developed in previous
sections, is summarized here. The standard pyramid notations are used: initial
image is G0, its first subband is L0, the HR image is denoted G−1 and its first
subband is L−1. Edges in Laplacians refer to the their representations as coupled
positive-negetive linear structures.

1. Given a G0 (LR image), generate L̂−1 using the iterative process used in
SRP with the null prior (0 image). This gives an estimate of L−1 with edges
at correct locations but with wrong widths.

2. Generate an edge model description of L̂−1.
3. Switch the blur elements to corresponding sharp elements and reconstruct

to get L̃i−1. This version of L−1 should have sharp edges but may not have
lower frequency details due to modelling errors.

4. Using G0 (LR image), again generate L−1 using the iterative process used
in SRP, but with L̃−1 as the prior.

5. Genrate the HR image as G−1 = exp(G0) + L−1.

The above algorithm uses the SRP and Laplacian edge modelling processes
in a way that allows them to complement each other. The SRP based interpo-
lation is able to insert the correct mid- and low-frequency components in L̂−1,
consistent with G0. However, it can neither insert nor alter any high-frequency
components (π/2 . . . π). This leads to blurring of sharp edges. By invoking the
assumption that sharp edges arise due to occlusion, we proceed to sharpen all
edges in the image that are sharp enough to be in L0. This is done by modelling
the initial estimate (L̂−1) and replacing thick edge models with sharp edge mod-
els. This revised estimate, L̃−1, has high frequencies injected at the right places.
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In order to minimize any errors introduced by the model-switch process, it is
regularized by once again passing through the SRP process.

5 Results

In order to evaluate the proposed method, its performance was tested on a diverse
set of five images and compared with the results for bicubic interpolation. The
representative set is shown in Figure 6, consisting of an artificial image, a texture
dominated image, a linear edge dominated image and two portraits. The available
images were taken as true HR (THR) and the LR images were generated using
blurring and subsampling of these images. The HR images generated from the
LR for the proposed and bicubic methods were compared to the THR. The result
is shown in Figure 7. The HR images generated by the proposed method has
sharper edges. An analysis of the errors indicate that the proposed method does
best for isolated edges. In regions having dense edges (as in Barbara texture
regions), the errors are largest. This is mainly due to Laplacian edge modelling
limitations. However, the errors are no larger than for bicubic interpolation.
Thus the modelling step does not introduce instabilities at these regions.

a b c d e

Fig. 6. Representative set (a) Box (b) Barbara (c) Building (d) Apoorva (e) Lena

5.1 Numerical Evaluation

Aside from visual inspection, it is desirable to have a numerical evaluation of
performance. In the present case, availbility of ground truth allows for computa-
tion of error based SNR metrics. However, the standard SNR for images would
be dominated by the energy present in low frequencies. In order to emphasize
the accuracy of the finer details for HR generation, modified measures are used.
We have defined HF PSNR (High Frequency Proportional Signal to Noise Ratio)
where we consider only the HF noise and a proportional amount of the signal
power (as actual HF signal is often very small and peak HF power unrealistic).
The HF PSNR is thus defined as

HF PSNR = 10 log

[
NA × ∑ |FTorig[i, j]|2∑̂|FTest[i, j] − FTorig[i, j]|2

]
(2)

where
∑

is summation over all components,∑̂
is summation over the HF components [0.25π, π],

NA = fraction of spectral components summed over in the denominator,
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a b c d

a b c d

a b c d

a b c d

a b c d

Fig. 7. Comparative results (selected areas magnified for display) : (a) Output of Bicu-
bic interpolation (b) Output of our method (c) Error in bicubic interpolation, (d) Error
in our method. Dynamic range of residual images are stretched to suit display.
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Table 1. The HF PSNR and L−1PSNR values for the representative image set. The
calculation is done for SRP based method, our method and bicubic interpolation. The
HF PSNR is calculated over 0.25π to π.

image HF PSNR HF PSNR HF PSNR L−1 PSNR L−1 PSNR L−1 PSNR
for bicubic for SRP for our method for bicubic for SRP for our method

Box 19.11 33.65 36.13 30.98 44.20 46.11
Barbara 24.16 25.76 25.52 33.45 34.46 34.22
Building 24.86 26.58 26.64 32.20 33.42 33.52
Apoorva 34.95 34.94 34.66 37.41 37.20 37.05
Lena 30.68 31.84 31.45 34.17 34.87 34.50

a b c

Fig. 8. Sharpening of edges (a) Original image (b) Bicubic interpolated (c) Proposed
method. Note that some edges have been rendered even sharper than in the original
HR image (marked by ovals). This happens due to our underlying model that all sharp
edges are occlusion edges that should be rendered as step edges. These enhancements
are visually acceptable though they degrade the SNR measures.

FTest[i, j] = Fourier Transform of the generated HR image and
FTorig[i, j] = Fourier Transform of the original HR image.

The HF-PSNR considers all high frequencies, whether or not they play a role
in defining edges. Conversely, it ignores the role played by lower frequency com-
ponents in edges. As the generation of HR was critically dependent on generation
of the L−1, we define L−1-PSNR 1 where the PSNR is computed on the L−1

image rather than the G−1 image.

L−1PSNR = 10 log
[
(2B − 1)2

MSEL−1

]
. (3)

where MSEL−1 is mean squared error defined for L−1 subband as

MSEL−1 =
1

m × n

∑
m

∑
n

(L−1[m, n] − ˜L−1[m, n])2. (4)

1 For consistency with earlier sections, we continue to refer to the THR and HR as
G−1 and the corresponding Laplacian level as L−1.
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The HF PSNR and L−1-PSNR values calculated for the sample set is given
in Table 1. In addition to bicubic, we have also compared the proposed method
to interpolation by SRP using the 0 prior.

In Table 1 it is observed that the proposed method gives good results for
all types of images, but its comparative advantage varies from image to im-
age. For images with sharp straight edges (Box, Building) it is the best. For
soft images (Apoorva) it scores less, though the output looks sharp in Figure 7.
This discrepency is explained on detailed examination of the errors. The true
high resolution image itself may not have perfectly sharp edges due to optics or
processing. The proposed method makes them sharp by opting for the model ele-
ment change. This is shown in Figure 8. While such sharpenning may be visually
acceptable (or even be desirable), they degrade THR based SNR measures.

6 Conclusion and Future Work

A method of achieving HR image from a single LR image has been proposed.
It is based on a generic generative edge model that removes the requirement for
any training set and makes the method widely applicable. It exploits the model
based description of Laplacian subbands and the Symmetric Residue pyramid
techniques to generate a putative Laplacian subband corresponding to the de-
sired HR image. The results of this method are good. At some places the edges
are rendered sharper than in the original HR image. As no ringing artefacts are
created by this over-compensation, it is not a major concern as far as Super-
Resolution is concerned. Other errors are introduced due to modelling failures.
Both the modelling and the SRP processes may need to be optimized for this
method. Future direction of work will also focus on using this single image ap-
proach in association with reconstruction-based approaches to exploit multiple
LR images optimally.
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