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Abstract. Photographs are often used as input to image processing and
computer vision tasks. Prints from the same negative may vary in inten-
sity values due, in part, to the liberal use of dodging and burning in pho-
tography. Measurements which are invariant to these transformations can
be used to extract information from photographs which is not sensitive
to certain alterations in the development process. These measurements
are explored through the construction of a differential geometry which is
itself invariant to linear dodging and burning.

1 Introduction

Photographs are often used as test data in the computer vision literature. Prop-
erties of these photographs ranging from “Gaussian curvature” to edges, to sta-
tistical characterizations of the intensity values are commonly used to extract
interpretations. In some cases, the method of acquisition of these photographs
plays a central role. This is certainly the case in some of the work on the three-
dimensional reconstruction of photographed scenes which is based on projective
geometry (e.g. [1]). In other work, the mechanism by which the photograph is
captured plays less of a role. It is sometimes overshadowed by the identification
of features which are thought to be relevant to biological visual systems (e.g. [2]).
Whether the camera optics are modeled or not, most approaches to computer
vision ignore the variability of the prints resulting from identical scenes and
optics. This observation also holds for digital photographs since their creation
process closely mirrors that of photographs printed from film.

In this article we examine the process by which a black and white photograph
is developed. This is followed by the construction of a geometry which is invariant
to dodging and burning. We use this geometry to develop a set of invariant
measures and illustrate their use in an example segmentation task.

1.1 Film

The active part of black and white film is an emulsion. It contains a uniform
distribution of silver halide crystals suspended in a gelatin. Upon exposure to
sufficient light, a small part of the crystal becomes reduced to metallic silver.
The choice of a particular silver halide, such as silver bromide or silver iodide,
together with the choice of gelatin determines the film’s response to light. The
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film development process reduces crystals which have been sufficiently exposed
to light entirely into metallic silver which makes the negative visibly dark in
areas. The silver halide crystals do not store an intensity value. Their state is
almost binary. Thus grey tones are represented by different densities of metallic
silver simply referred to as the density on the film.

During the development process, the film is placed in a developer liquid. The
developer reacts with the crystals which were hit by light. Crystals which have
absorbed less light tend to react slower thus the amount of time that the film
spends in the developer influences how dark the negative will be. This will in turn
influence how bright the print will be. The term exposure is used to represent
how affected the film is by the oncoming light. The exposure of a region on the
negative is given by the product the average light intensity hitting that region
and the amount of time during which the light has hit it, also known as the
exposure time:

E = T × I. (1)

1.2 Printing

A photograph is printed by projecting a light through the negative onto photo
paper and then developing the paper. The process by which photo paper captures
information about the light hitting it is quite similar to that for the film. Here,
as with the film, there are choices to be made about the chemical makeup of the
light capturing membrane which will have profound effects on the final product.
One of the key differences between photo paper and film is the number of stops.
An average sheet of photo paper has no more than five stops of sensitivity to light
intensity compared to the 15 stops which some negatives can represent. Thus
film can record a range of intensities which is around 215 greater than photo
paper. There is therefore a decision to be made about what intensity range will
be expressed on the photo paper. This decision will affect the contrast of the
produced print as well as what information will be clearly represented in the
printing.

Denser regions of the negative will absorb more of the light projected onto
the negative than areas where there are few metallic silver spots. However, the
spots are never so tightly packed that no light will pass at all. Every part of the
photo paper will therefore be hit by light. Thus increasing exposure time will
increase the exposure of the entire photo paper proportionally to the density
of the relevant region on the negative. This process does not simply change the
contrast of the photograph, it alters what information will be present in the final
print. Since denser regions of the negative allow less light through, it takes longer
for a sufficient amount of light to cross those regions to represent photograph
details than it does for bright regions. Thus, the simplest way to display this
information is to increase the exposure time of the photo paper. However, this in
turn can saturate the dark regions of the print where light flows freely through
the negative. This demonstrates that the way in which various densities on the
print relate to each other and to the negative is not fixed. Figure 1(a) illustrates
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this. Increasing the exposure time of the negative on the photo paper by a factor
of k is equivalent to shifting the chemical reduction function to the left by ln(k).
This follows directly from Equation 1.

(a) Reduction function (b) Discretized reduction
function

(c) Two discretized reduc-
tion functions

Fig. 1. Figure (a) shows an example chemical reduction function which specifies how
exposure through the negative affects the density on the photo paper. The numbers in
the graph only serve to show that the grid is regularly spaced and the standard direction
of increasing values. Figure (b) adds bins representing a regular discretization of the
photo paper density. The vertical lines represent the borders of the bins. Notice that
the induced discretization of log exposures is not necessarily regular and depends on
the reduction function. The example reduction function illustrates how exposure values
are better captured in the mid-exposure range. Figure (c) demonstrates how a different
choice of reduction function can change how exposure information is encoded.

1.3 Dodging and Burning

The previous section discussed the process by which a print is made directly from
a negative. Dodging and burning are two commonly used techniques used during
the printing of photographs which alter the exposure time of specific regions
of the final print. Dodging involves completely blocking light from contacting
certain regions of the photo paper for a portion of the exposure time. Burning
involves doing a complete exposure followed by another exposure during which
the light is restricted to contacting only a particular region of the photo paper.
The process is often carried out using pieces of cardboard to block out the light.
For dodging, the cardboard is affixed to a thin rigid rod so that it may be held
over any part of the photograph.

For esthetic reasons, the dodging and burning tools must be kept in motion
during their use. This allows the exposure times to vary “smoothly” between the
regions being worked on and the rest of the photograph. Without the motion, the
silhouette of the tool being used would become visible on the print. As indicated
in [3] and in [4], photographers feel that they can apply these techniques liberally
on photographs, especially when significant motion is used. Adams claims that
most photographs can benefit from some dodging or burning [3]. Further, it is
clear that he does not present these alterations as tools to change the subject,
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but rather as tools to accentuate particular properties of the subject. Thus in
processing photographs, we must be aware of the possibility that such transfor-
mations may have been applied and that they may be hard to detect or reverse.
Figure 2 shows an extreme case of burning.

(a) Original photograph (b) Transformed photograph

Fig. 2. Figure (a) shows a portion of the original photograph. Figure (b) shows the
same photograph once burning has been applied. The burning is simulated using Adobe
Photoshoptm.

Dodging and burning selectively alter the exposure times of regions of the
print. Their effect can therefore be explained using the standard notions of pho-
tographic development explored in §1.1 and §1.2. In particular, recall that chang-
ing exposure time is equivalent to shifting the chemical reduction function along
the log exposure axis. This implies that dodging and burning can be seen as
shifting the reduction function locally as long as every part of the print has a
non-zero exposure time. In fact, assuming that when in motion the dodging or
burning tool moves linearly and that the tool is close enough to the print so that
the penumbra of the tool is not significant, this observation completely deter-
mines the impact of the techniques on the print. For example, a region which was
hidden from exposure for exactly half the development time would have the same
final development as if the chemical reduction function was shifted by − ln(2)
for that region and there had been no dodging at all. Further, since dodging
restricts the exposure time and burning increases it, the only difference between
them is that burning shifts the reduction function to the left while dodging shifts
it to the right.

2 Greyscale Photograph Geometry

As Florack argues in [5], we should not impose a topology or geometry directly
on the space of photographs. Rather than impose properties on physical en-
tities, we should instead impose them on the space of measurements and on
measurement results. The measurements which we are interested in can be pa-
rameterized by their location, log-width and orientation. The log-width of a
measurement distinguishes between the various scalings of a measurement while
the orientation parameter destinguishes between its possible rotations. The set
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of measurements and results for a given photograph is therefore a subset of the
space I = M × U which we call the image space and where M = R

2 × R × S1

is the measurement space and S1 is the one dimensional sphere. The space U
contains all possible measurement results. A point in image space corresponds
to a value being returned by a measurement at a given location, log-width and
orientation. Throughout the rest of this article, we will refer to the set of image
space points corresponding to a particular photograph as its image, or simply
an image if the photograph is not specified.

Since M is a four-dimensional space and the measurement values are a function
of points in M, we can assume that an image is a four-dimensional differential
manifold in I. Now that images have a manifold structure, we can define a geom-
etry for these images based on the relationships between the components of their
ambient space. We will begin by establishing a geometry on the measurement
space M and then proceed to extend it to the full image space I.

2.1 Geometry of the Measurement Space

In the Riemannian geometry of a Euclidean space a (perhaps arbitrary) unit
length is chosen. The notions of length and curvature are dependent on the cho-
sen unit length in this situation. Our situation differs in that each measurement
views its width as being of unit length. Thus if the locations of two measure-
ments remain the same but their widths double, then their perceived distance
will halve.

The measurement space with a fixed width, M
w, looks like Euclidean space

with the standard circle principal bundle. This has the effect of rotating the
orientation values along with the location plane. Given the observations from
this and the previous paragraph, we can define a Riemannian metric on M

w as
〈 , 〉(x,θ) = g1 dx1⊗dx1+g2 dx2⊗dx2. Since distances are inversely proportional
to width as expressed above, the gi coefficients must be 1/w2. Thus we get the
following metric for M

w

〈 , 〉(x,θ) =
dx1 ⊗ dx1 + dx2 ⊗ dx2

w2
. (2)

The orientation circle and location parameters are closely related since the
orientation circle represents the direction in which the measurement is taken. So
any curve in measurement space must have its orientations and location tangents
aligned. This can be achieved by creating a sub-Riemannian geometry defined by
a distribution on M

w using the following cotangent equation and then restricting
curves to travel along this distribution:

Ω = dx2 − tan θdx1 = 0. (3)

So far the proposed geometry is invariant to scaling of the visual signal since
scaling the signal also scales measurements proportionally. However, in the full
measurement space, width is allowed to vary. Since the width of a measurement
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can be seen as a length from another measurement’s point of view, the measure-
ment space metric must include a term to take into account variation in width
which itself must be inversely proportional to current width:

〈 , 〉(x,θ) =
dx1 ⊗ dx1 + dx2 ⊗ dx2 + dw ⊗ dw

w2
. (4)

This makes the measurement space fully invariant to scaling as well as to rotation
and translation. The distribution defined for M

w can be used unchanged in M

to represent the relationship between location and orientation.
The constructed metric is well known as the metric for the upper-half plane

model of three-dimensional hyperbolic geometry [6].

2.2 Geometry of the Image Space

Much as was the case for orientation, we cannot introduce measurement values
into the metric. To do so would be to establish intrinsic location related prop-
erties in measurement values. The measurements we choose will be based on
brightness information. We will therefore start by defining the measurements to
collect average brightness over a unit disc. Let’s call these measurements bx,θ,w.
We will examine how these measurements interact with a set of simple photo-
graphic transformations so as to derive better values to use when defining base
measurements.

The image space Ib for this measurement can be expressed by adding a bright-
ness line B = R to the measurement space: Ib = M × B. The argument for
excluding measurement values from the metric applies to brightness. However,
excluding brightness from the metric does not exclude it from the geometrical
description. On the contrary, it defines I geometrically up to acceptable trans-
formations of the brightness line. We choose to include the linear dodging trans-
formation, assuming linear reduction functions, introduced earlier along with
varying exposure time in the set of transformations under which image content
is invariant,

u← u + a1x + a2y + tu, (5)

where a1, a2 and tv are arbitrary constants, the last one representing a trans-
lation of v. In this equation, u is a coordinate for the brightness line. We have
chosen this transformation since it is a basic image correction transformation.
As desired, a difference of brightness values at two distinct measurement points
is meaningless (i.e. not invariant to the transformation group).

Our analysis bears some resemblance to that of Koenderink and van Doorn’s [4].
Our motivation is quite different. Most significantly, since measurements were
not explicitly considered in [4] the notions of measurement width and orientation
were not developed. In our work these ideas turn out to be key for the devel-
opment of a methodology for hierarchical decomposition (moving from coarse
measurement sizes to finer ones), which is the focus of §3. We note that in the
context of metrics for greyscale photographs there is also related work by Eberly
and his colleagues [7].
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2.3 Invariant Measurements

It is clear from the previous section that average brightness is not an invari-
ant measurement to the photographic transformations which we have discussed.
There are many possible invariant measurements. In this section we focus on
perhaps the simplest, a measurement type which is based on best fit planes.

For a given measurement point v = (x1, x2, θ, w), the associated measurement
value for our example is a best fit plane pv for the brightness of the photograph
over a disk d described by location (x1, x2) and radius w. The fit minimizes the
average integral of (B(x, y)−p(x, y))2 over d, where B represents the brightness
values while p represents the plane. The plane is recorded using three parameters.
The first two are the slopes of the plane along orthonormal axes ut and un where
ut is in line with θ and ut forms a right-handed frame with un. The last parameter
is simply the brightness value of the plane over point (x, y). Thus the space of
measurement values U is composed of these planes p and for convenience we
define functions mt, mn, b : I → R which return the ut-slope, un-slope and
elevation at a given image point respectively.

The plane parameters described above are clearly invariant to rotation and
translation of the Euclidean plane. However, they are not invariant to transfor-
mations such as linear dodging or scaling. When a linear dodging is applied to
a visual signal, it leaves the values collected by dmt and dmn along a curve in-
variant. The changes in plane elevations given by db, however, are not invariant
to this subgroup of transformations as we have seen when examining average
brightness measures. There we saw that though differences in brightness values
were preserved along a brightness line, they are not preserved when taken across
brightness lines. We can use this to define an invariant value given below, which
is one way of representing how much the plane is increasing in height as you
move along a curve:

Ωb = du−m
√

dx2
1 + dx2

2.

When a photograph is scaled by a scale factor s, all the slopes at corresponding
points are scaled by 1

s and all the corresponding measurement widths are scaled
by s. Therefore

Ωt = w · dmt and Ωn = w · dmn

are invariant under scaling of curves in I. The values of du−m
√

dx2
1 + dx2

2 are
also invariant for the same reasons. Thus we get three invariant values which
represent the changes in slope and elevation of the planes along a given curve.
In the next section, we use these measurements and relations to develop an
algorithm for region grouping.

This concludes our construction of the geometric model and of our basic set
of invariant measurements. This model can be used to create other measurement
classes which are invariant to the photographic transformations covered in this
paper. Further, expressions based on the values which are computed using the
presented measurements can themselves be used as input into standard image
processing algorithms. In the next section, we examine the properties which are
represented in the model through an example task of segmentation.
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3 Example Task

So as to illustrate aspects of the image space geometry, we define a näıve seg-
mentation process based on the invariant measurements presented in §2.3. Al-
gorithms 1 and 2 describe the two steps of the process in pseudo-code. First
the invariant measurements are estimated so as to produce an image for the in-
put photograph. The image manifold is collapsed into two-dimensional surfaces.
Then the grouping algorithm segments the image points into separate surfaces
based on local affinity. Note that the widths referred to in the algorithms are
not scales as in [8] put simply widths of measurement discs. The presented al-
gorithms are provided for the sole purpose of examining the structures created
using the invariant measurements.

Figure 3(c) illustrates the level of detail collected at different measurement
widths. Each layer image shows the averaging of approximation discs which
have been kept after running the measurement algorithm. These layers can be

Algorithm 1. Measurement Algorithm
for w = max width down to 1 do

for q a pixel in the photograph do
d← the disk of radius w centered at q
pd ← plane fit to intensity over d
f(q,w) ← the mean squared error of the fit

end for
end for
for w = max width down to 1 do

for q a pixel in the photograph do

if
f(q,w)

w
> ε

or
f(q,w)

w
>

f(q,w+1)
w

or
f(q,w)

w
>

f(q,w−1)
w

then
delete pd

end if
end for

end for
for w = 1 to max width do

for q a pixel in the photograph do
for v ∈ {(1, 0, 0), (0, 1, 0), (0, 0, 1)} where the components represent directions
x1, x2 and w resp. do

Δb(q, w)← Ω′
b(v)

Δt(q, w)← Ω′
t(v)

Δn(q, w)← Ω′
n(v)

end for
end for

end for

This defines a discretized three-dimensional manifold in I which depends on parameter
ε. For our experiments, we set ε = 0.1. We use symbols Δ′

· instead of Δ· to indicate
that difference equations are used to approximate the infinitesimal measurements.
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Algorithm 2. Grouping Algorithm
for w = 1 to max radius do

for q a pixel in the photograph do
for v ∈ �γ : γ ∈ {−1, 0, 1}3� do

for i ∈ {1, 2, 3} do
if vi = −1 then

qi ← qi − 1
end if

end for
v = (|v1|, |v2|, |v3|)
At location q with width w in direction v:
if max (Δb, kΔt, kΔn) < δw then

(q1, q2, d) is adjacent to (q1, q2, d) + γ
end if

end for
end for

end for

This produces a grouping across measurement points which is dependent on parameters
k and δ given the output from the measurement algorithm. For our experiments, we
set k = 1 and δ = 0.5.

recombined by simply drawing one over the other, from greatest width to small-
est. Pixels for which there is no measurement in a given layer are left unaltered
when the layer is drawn. This is shown in Figure 3(d).The important thing to
note is that structures in the photographs appear at reasonable widths. For
example the trunk of the tree appears around widths of 10 pixels but is not
present around widths of 20 pixels. Figure 4 shows that in fact the layers pre-
sented in Figure 3 form two-dimensional surfaces. The results of applying the
näıve grouping algorithm, shown in Figure 5(b), show that structural informa-
tion about the photograph can easily be extracted from the image structure.
Figures 5(a) and 5(b) confirm that the measurements are indeed unchanged by
the application of a Adobe Photoshoptm burning effect. Finally, Shi and Malik’s
graph-cut based algorithm [9] is applied on the original photograph and on the
transformed photograph to show that this popular approach to segmentation is
sensitive to dodging and burning transformations when intensity value measure-
ments are used as inputs. This sensitivity can be problematic if the information
from the original negative is being sought rather than information about the
particular print being examined.

4 Conclusion

We have introduced a geometry which is invariant to certain forms of burning and
dodging. We then used this geometry to create invariant measurements which
represent information which would not change given a different development
process.
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(a) Photograph (b) Error

(c) Layers

(d) Combined layers

Fig. 3. (a): The original photograph. (b): The difference between the original photo-
graph and the photograph reconstructed from the layers. (c): From left to right, the
measurement size layers with widths 20, 10, 4 and 1 pixels, respectively. (d): From left
to right, the reconstructed photographs for measurement size layers with widths down
to 20, 10, 4 and 1 pixels, respectively.

Fig. 4. Two of the surfaces obtained by the grouping algorithm, corresponding to the
trunk of the tree and the region to its lower right. These surfaces are manifolds in 3D,
which could in fact overlap when viewed from any fixed viewing direction.
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(a) (b)

Fig. 5. These illustrations demonstrate that the presented approach is in fact invariant
to the defined photographic transformations. (a): Left Column: from top to bottom,
the original photograph and its layers with widths 10 and 4 pixels. Right Column: from
top to bottom, the original photograph with a linear dodging transformation applied
to it and its layers with widths 10 and 4 pixels. In fact the average grading is not
represented in the image structure and both photographs are identically represented,
as invariance to linear dodging requires. (b): Left Column: from top to bottom, the
original photograph, our grouping and the grouping from [9]. Right Column: from
top to bottom, the original photograph with a linear dodging transformation applied,
our grouping of the transformed photograph and the grouping generated by [9]. The
source code from http://www.cis.upenn.edu/∼jshi with default parameters was used
to compute the results of the algorithm presented in [9].

The presented algorithm used properties of best-fit planes to represent a pho-
tograph. There are many more possibilities for measurements which would fit
this framework. Further, the photograph representation presented in this pa-
per could be combined with existing vision algorithms for such tasks as ob-
ject recognition within photographs for which we do not know the development
process.
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