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Abstract. In the Kalman filter, the state dynamics is specified by the
state equation while the measurement equation characterizes the likeli-
hood. In this paper, we propose a generalized methodology of specifying
state dynamics using the conditional density of the states given its neigh-
bors without explicitly defining the state equation. In other words, the
typically strict linear constraint on the state dynamics imposed by the
state equation is relaxed by specifying the conditional density function
and using it as the prior in predicting the state. Based on the above
idea, we propose a sampling-based Kalman Filter (KF) for the image
estimation problem. The novelty in our approach lies in the fact that we
compute the mean and covariance of the prior (possibly non-Gaussian)
by importance sampling. These apriori mean and covariance are fed to
the update equations of the KF to estimate the aposteriori estimates of
the state. We show that the estimates obtained by the proposed strategy
are superior to those obtained by the traditional Kalman filter that uses
the auto-regressive state model.

Keywords: Dynamic state space models, Kalman filter, Auto-regressive
models, Importance sampling, Markov random fields.

1 Introduction

The problem of image estimation involves recovering the original image from its
noisy version. The image estimation problem can be cast in to a state estimation
from noisy measurements in state space representation of the image. When the
state transition and measurement equations are both linear, and the state and
measurement noises are independent and additive Gaussian, the Kalman filter
gives the minimum mean square error (MMSE) estimate of the state. Exten-
sion of the 1-D KF to 2-D was first proposed by Woods and Radewan [7]. They
considered the local neighborhood in updation of the state vector and arrived
at a suboptimal filter known as the reduced update Kalman filter (RUKF) [8].
The reduced order model Kalman filter (ROMKF) proposed in [9] includes only
local states in its state vector, but performs on par with RUKF. Effects of any
distortion resulting from blur and noise can be removed by Kalman filtering,
provided the appropriate image and blur parameters are completely known. In
general, however, such parameters are apriori unknown, and furthermore can
vary spatially as a function of the image coordinates. Hence, adaptive identi-
fication/filtering procedures are necessary for satisfactory restoration. A rapid
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edge adaptive filter for restoration of noisy and blurred images based on multiple
models has been presented in [12].

A primary issue with all image estimation methods is about how they handle
noise smoothing versus preservation of edges since the two requirements are
contradictory. Geman and Geman [13] approach the edge preservation problem
using line fields. The smoothness constraint is switched off at points where the
magnitude of the signal derivative exceeds certain thresholds. For a thorough
survey of techniques for image estimation, we refer the reader to [11].

To preserve edges, one must look beyond Gaussianity. Increasingly, for many
application areas, it is becoming important to include elements of non-linearity
and non-Gaussianity, in order to model accurately the underlying dynamics of
a physical system. In this paper, we propose an interesting extension to the tra-
ditional Kalman filter to tackle discontinuities by incorporating non-Gaussianity
within the Kalman filtering framework. This is achieved by modeling the prior as
a discontinuity adaptive Markov random field and proposing sampling-based ap-
proaches to derive necessary statistical parameters required for the update stage
of the Kalman filter. If the state transition equation is not known but an assump-
tion on the state transition density (possibly non-Gaussian) can be made we can
still use the Kalman filter update equations in the proposed frame work. The
edge preservation capability is implicitly incorporated using the discontinuity
adaptive state conditional density. Importance sampling is used to obtain the
statistics of this PDF and the Kalman filter is used to update the prior estimates.

We use the discontinuity adaptive function given by Li [2] to construct the
prior conditional density and show how the edges are better retained in our
method. This is in addition to obtaining better overall estimates of the entire
image. It may be noted that the proposed approach is different from the En-
semble Kalman filter [6,5] which is based on Monte Carlo simulation of the
state probability distribution. It works by creating and propagating the ensem-
ble through model operator. The mean and the error covariance are obtained by
the analysis of the ensemble. In contrast, we use the Monte Carlo approach only
to determine the mean and covariance of the conditional PDF. It is possible to
extend the proposed approach to nonlinear filtering problem.

2 The Kalman Filter

The Kalman filter, rooted in the state-space formulation of linear dynamical
systems, provides a recursive solution to the linear optimal filtering problem [10].
It applies to stationary as well as non-stationary environments. The solution
is recursive in that each updated estimate of the state is computed from the
previous estimate and the new input data.

2.1 Dynamic State-Space Model

The general state space model can be broken down into a state transition model
and measurement model. In linear Gaussian regression, the state space repre-
sentation is as follows:
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xk+1 = Fkxk + wk (1)

yk = Hkxk + vk (2)

where yk ∈ Rny denotes the output observations, xk ∈ Rnx is the state of the
system, wk ∈ Rnw is the process noise and vk ∈ Rnv is the measurement noise.
The mappings Fk : Rnx → Rnx and Hk : Rnx→Rny represent the deterministic
process and measurement models. To complete the specification of the model,
the prior distribution is denoted by p(x0). The process noise wk is assumed to
be additive white Gaussian, with zero mean and with covariance matrix defined
by Qk. The measurement noise vk is additive white Gaussian with covariance
matrix Rk. The process and measurement noise are assumed to be uncorrelated.
The states are assumed to follow a first-order Markov model and the observations
are assumed to be independent given the states.

For the state space model given above, the minimum mean squared error
(MMSE) estimate of the state xk can be derived using the following Kalman
recursive equations [3]:

State estimate propagation:- x̂k/k−1 = Fkx̂k−1

Error covariance propagation:- Ck/k−1 = FkCk−1FT
k + Qk−1

Kalman gain matrix:- Kk = Ck/k−1H
T
k

[

HkCk/k−1H
T
k + Rk

]−1

State estimate update:- x̂k = x̂k/k−1 + Kk(yk − Hkx̂k/k−1)

Error covariance update:- Ck = (I − KkHk)Ck/k−1

Here, x̂k−1 and Ck−1 are the posteriori estimates of the state and error covari-
ance of the previous step available at time k, x̂k/k−1 and Ck/k−1 are the apriori
estimates of the state and error covariance at time k, yk is the new measurement
at time k, Fk and Hk are the state transition and measurement matrices at time
k, Kk is the Kalman gain, and the x̂k and Ck are the posterior state and error
covariance of the present step.

For the image estimation problem, xk corresponds to the true image pixels and
yk are the observations of the degraded image pixel. Matrix Fk contains the auto-
regressive (AR) coefficients of the image. For example, if a1, a2, a3 are the AR
coefficients of the original image (i.e., coefficients of a three pixel neighborhood

with non-symmetric half plane support (NSHP)), then Fk =

⎡

⎣

a1 a2 a3

1 0 0
0 1 0

⎤

⎦ .

Since we do not assume any blurring, we have Hk = [1 0 0]. The above filter is
referred to as the Auto-Regressive Kalman Filter (ARKF). Note that the filter
imposes a strong (linear) constraint on the state equation. It is important to
observe that linear dependence implies statistical dependence but not vice-versa.
Our idea is to arrive at a more general framework wherein pixel dependencies
can be expressed statistically.
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3 Discontinuity Adaptive Prior

A realization of a random field is generated when we perform a random experi-
ment at each spatial location and assigns the outcome of the random experiment
to that location. A Markov random field (MRF) possesses Markovian property:
i.e., the value of a pixel depends only on the values of its neighboring pixels and
on no other pixel [4,2]. More details of MRF can be found in Li [2].
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Fig. 1. Plot shows how MRF and DAMRF differ in the weighing with respect to η

Smoothness is a property that underlies a wide range of physical phenom-
ena. However, it is not valid at discontinuities. How to apply the smoothness
constraint while preserving edges has been an active research area within the
MRF framework. Li [2] identifies that the fundamental difference among differ-
ent models for dealing with discontinuities lies in the manner of controlling the
interaction among neighboring points. Li then proposes a discontinuity adap-
tive (DA) model based on the principle that whenever a discontinuity occurs,
the interaction should diminish. One such interaction function is hγ(η) = 1

1+ η2
γ

and its corresponding adaptive potential function is gγ(η) = γ log(1 + η2

γ ). The
function is such that the smoothing strength |ηhγ(η)| increases monotonically
as η increases [2] within a band Bγ = (−√

γ,
√

γ). Outside the band, smoothing
decreases as η increases and becomes zero as η→∞. This enables it to preserve
image discontinuities. It differs from the quadratic (Gaussian) regularizer which
smoothes edges as η→∞. In Fig. 1 we show that for large η the Gaussian MRF as-
signs zero weight while the discontinuity adaptive MRF (DAMRF) allows edges
with finite weight.

In the case of a simple GMRF model, the state conditional probability density
function (PDF) is given by exp(−η2) where η2(x) = ((x − c1)2 + (x − c2)2 +
(x − c3)2)/2β2. Pixels c1, c2, c3 denote the previously (estimated) pixels in the
NSHP support. This can be shown to be equivalent to a Gaussian (PDF)with mean
(c1+c2+c3)/3 and varianceΓ = β2/3. We assume the state conditional density to



166 G.R.K.S. Subrahmanyam, A.N. Rajagopalan, and R. Aravind

be non-Gaussian and of the form exp(−gγ(η)) where gγ(η) = γ log(1 + η2

γ ) and
η is as defined in the simple MRF case which leads to the DAMRF model [2].

4 Importance Sampling

It is not analytically possible to compute the mean and covariance of the non-
Gaussian DAMRF distribution. Hence, we resort to Monte Carlo techniques. An
efficient way of doing this is to adopt the importance sampling method. Our aim
is to obtain the conditional mean and variance of the distribution corresponding
to the DAMRF at every pixel, using importance sampling.
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Fig. 2. Importance sampling: A is the PDF whose moments are to be estimated, while
B is the sampler density

Importance Sampling (IS) is a Monte Carlo method to determine the estimates
of a (non-Gaussian) target PDF, provided its functional form is known up to
a multiplication constant [1]. Let us consider a PDF A(s) which is known up
to a multiplicative constant but it is very difficult to make any estimates of
its moments. However, from the functional form, we can estimate its support
(region where it is non-zero). Consider a different distribution B(s) which is
known up to a multiplicative constant, is easy to sample, and is such that the
(non-zero) support of B(s) includes the support of A(s). Such a density B(s) is
called a sampler density. A typical plot showing the PDFs of B (solid line) and
A (dashed line) is given in Fig. 2.

Our aim is to determine the first two central moments of the PDF A. Since it
is difficult to draw samples from the non-Gaussian PDF A, we draw L samples,
{s(l)}L

l=1 from the sampler PDF B. If these were under A, we can determine the
moments of A with these samples. In order to use these samples to determine
the estimates of the moments of A, we proceed as follows.

When we use samples from B to determine any estimates under A, in the
regions where B is greater than A, these estimates are over-represented. In the
regions where B is less than A, they are under-represented. To account for this,
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we use correction weights wl = A(s(l))
B(s(l))

in determining the estimates under A.

For example, to determine the mean of the distribution A we use μ̂a =
�

l wls(l)
�

l wl .

If L → ∞ the estimate μ̂a tends to the actual mean of A. This methodology of
estimating moments of A by sampling from an importance function B forms the
core of importance sampling.

5 The Proposed Kalman Filter

In this section, we present a new algorithm for estimating an image from its
degraded version using the state conditional PDF and Kalman filter update
equations. In section 3, we showed how to construct a DAMRF PDF using a
discontinuity adaptivity MRF function. In section 4, we explained how to deter-
mine the estimates of a PDF using importance sampling. We now present a novel
strategy which integrates the above steps within the Kalman filter framework
to restore images degraded by additive white Gaussian noise. In the proposed
strategy, only the assumption on the conditional PDF needs to be made. The
parameters of the PDF are a function of the already estimated pixels and the
values of Γ and γ. This implicitly generalizes the state transition equation. The
steps involved in the proposed method are as follows:

1. At each pixel, construct the state conditional PDF using the past three pixels
from its NSHP support, and the values of Γ and γ in the DAMRF model
(section 3) . Using the DAMRF function given by [2] we construct the state
conditional PDF as

P (X(m, n)/ ̂X(m − i, n − j)) = exp
(

−γ log(1 +
η2(X(m, n))

γ
)
)

; (3)

where (i, j) = (0, 1), (1, 0), (1, 1) and
η2(X(m, n)) = ((X(m, n) − ̂X(m, n − 1))2 + (X(m, n) − ̂X(m − 1, n))2

+ (X(m, n) − ̂X(m − 1, n − 1))2)/(2β2), and β2 = 3Γ .
Here, X and ̂X refers to the original image and the estimated image, re-
spectively. The pixels ̂X(m, n − 1), ̂X(m − 1, n) and ̂X(m − 1, n − 1) are the
(estimated) past three pixels of the NSHP support.

2. Obtain the mean and covariance of the above PDF using importance sam-
pling as described in section 4. Explicitly, we draw samples {sl} from a
Gaussian sampler 1 The sampler B(s) has mean μb = ( ̂X(m, n − 1) +
̂X(m − 1, n)+ ̂X(m − 1, n − 1))/3 and variance σ2

b = 15β2. We weight these
samples through the importance weights wl = A(sl)

B(sl) . The mean μ̂a and vari-
ance σ̂2

a of A are computed as

μ̂a =
∑

l wls
(l)

∑

l wl
σ̂2

a =
∑

l wl(s(l) − μa)2
∑

l wl
(4)

1 The idea is to have the support of the target density A included in the support of
the sampler density B so that the mean ’μb’ is near to the actual mean of the MRF,
and the variance ’σ2

b ’ is high enough.
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3. The predicted mean and error covariance are fed to the update stage of the
Kalman filter as follows:

x̂k/k−1 = μ̂a; Ck/k−1 = σ̂2
a;

Kalman gain matrix:- Kk = Ck/k−1H
T
k

[

HkCk/k−1H
T
k + Rk

]−1

State estimate update:- x̂k = x̂k/k−1 + Kk(yk − Hkx̂k/k−1)
This gives the estimated mean ̂X(m, n) = x̂k; go to step 1 and repeat.

Finally, the filtered image is ̂X.

We note that in this case the state becomes a scalar, the matrix Hn = 1, and yn is
the scalar observation pixel. This approach does not need the state equation (1).

In the proposed approach, based on the past three pixels of the NSHP support,
the prior is constructed. Importance sampling is used to estimate the mean and
covariance of the non-Gaussian prior. These estimates are effectively used by the
Kalman filter update equations (Kalman gain and mean updation equations),
to arrive at the posterior mean (the estimated pixel intensity). Note that in the
proposed formulation, the prior is not restricted to be Gaussian. In other words,
the process noise can have any distribution but with a known functional form.

6 Experimental Results

In this section, we compare the proposed importance sampling based Kalman
Filter (ISKF) with the auto-regressive Kalman Filter (ARKF). In an AR based
Kalman filter, the original image is used to determine the AR coefficients and
the process noise. An alternative is to use the AR coefficients obtained from
images of the same class or to use the observed image itself. But this will in
general, degrade the performance of the algorithm. In contrast for the proposed
algorithm, the image model parameters are not required. Since the conditional
PDF has all the information. The proposed algorithm has two parameters γ
and Γ which depend on the image. We have found that the optimum γ for
most images is in the range of 1 to 2 while the required value of Γ is in the
range of 50 to 150. For low values of γ and high values of Γ the estimated
image will be noisy, and for high values of γ and low values of Γ the estimated
image will be blurred. For a quantitative comparesion of ARKF and the proposed
method we use the improvement-in-signal-to-noise-ratio (ISNR) which is defined

as ISNR = 10 log10

(�
m,n(Y (m,n)−X(m,n))2�
m,n( �X(m,n)−X(m,n))2

)

dB. Here, (m, n) are over entair

image. X, Y and ̂X represent the original image, degraded observation, and the
estimated image, respectively.

Fig. 3(a) shows the ”daisy” image. The image after degradation by additive
white Gaussian noise of SNR = 10 dB is shown in Fig. 4(a). The images es-
timated by ARKF and the proposed importance sampling-based Kalman filter,
are given in Figs. 4(b) and 4(c), respectively. Note that the image estimated by
the proposed approach has sharp petals. At the same time, it is less noisy in
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(a) (b) (c)

Fig. 3. Original images (a) Daisy image, (b) Flowers image and (c) Bric image

(a) (b) (c)

Fig. 4. Daisy (a) Image degraded by additive white Gaussian noise (SNR = 10 dB ).
Image estimated using (b) AR based KF (ISNR = 3.42 dB) and (c) Proposed method
(ISNR = 4.25 dB, Γ = 50, γ = 1.5).

(a) (b) (c)

Fig. 5. Flower (a) Degraded image (SNR = 10 dB). Image estimated by (b) AR based
KF (ISNR = −1.39 dB) (c) Proposed method (ISNR = 3.73 dB, Γ = 50, γ = 1.5).

homogeneous regions compared to the ARKF output. It has a superior improve
ment-in-signal-to-noise-ratio (ISNR) value over ARKF.

Next, we show in Fig. 3(b) a flower image. It is degraded by additive white
Gaussian noise of SNR = 10 dB (Fig. 5 (a)). The image estimated by ARKF and
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the proposed approach are shown in Figs. 5(b) and 5 (c), respectively. The image
estimated by the proposed approach has very little noise, retains the edges, and
has higher ISNR value. Note the ringing-like artifact in the image estimated by
ARKF. For the proposed method, the overall appearance of the estimated image
is quite good.

(a) (b) (c)

Fig. 6. Brick (a) Degraded image (SNR = 10 dB ). Image estimated using (b) AR
based KF (ISNR = −1.3 dB) (c) Proposed method (ISNR = 1.96 dB, Γ = 50, γ = 2).

Fig. 3(c) shows a brick image while its degraded version is given in Fig. 6(a).
The images estimated by ARKF and the proposed method are shown in Figs.
6(b) and Fig. 6(c), respectively. The proposed sampling-based Kalman filter
again outperforms ARKF. The image retains the horizontal edges quite well and
is much closer to the original image as compared to ARKF.

The above results show that the proposed approach is superior to ARKF in
reducing noise, preserving edges, and yelding better ISNR values. Fixing the
parameters for the proposed scheme is also quite simple as discussed in the
beginning of this section.

7 Conclusions

We have proposed a novel importance sampling-based discontinuity adaptive
Kalman filter. Instead of using the state transition equation to predict the mean
and error covariance (as in traditional Kalman filter formulation), we use a
DA non-Gaussian state conditional density function for prediction. Importance
sampling is used to determine the apriori mean and covariance of a DAMRF
model. These are then used in the Kalman filter update equations to obtain the
a posteriori mean. The image estimates obtained by the proposed approach are
superior to those obtained with the auto-regressive Kalman filter.
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